Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-10T10:58:59.332Z Has data issue: false hasContentIssue false

Fluid description of the cooperative scattering of light by spherical atomic clouds

Published online by Cambridge University Press:  14 March 2013

N. PIOVELLA
Affiliation:
Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, Milano I-20133, Italy (nicola.piovella@unimi.it)
R. BACHELARD
Affiliation:
Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos, SP, Brazil
PH. W. COURTEILLE
Affiliation:
Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos, SP, Brazil

Abstract

When a cold atomic gas is illuminated by a quasi-resonant laser beam, light-induced dipole–dipole correlations make the scattering of light a cooperative process. Once a fluid description is adopted for the atoms, many scattering properties are captured by the definition of a complex refractive index. The solution of the scattering problem is here presented for spherical atomic clouds of arbitrary density profiles, such as parabolic densities characteristic of ultra-cold clouds. A new solution for clouds with infinite boundaries is derived, which is particularly useful for the Gaussian densities of thermal atomic clouds. The presence of Mie resonances, a signature of the cloud acting as a cavity for the light, is discussed. These resonances leave their fingerprint in various observables such as the scattered intensity or in the radiation pressure force, and can be observed by tuning the frequency of the incident laser field or the atom number.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bachelard, R., Bender, H., Courteille, Ph. W., Piovella, N., Stehle, C., Zimmermann, C. and Slama, S. 2012a The role of Mie scattering in the seeding of matter-wave superradiance. Phys. Rev. A 86, 043605.CrossRefGoogle Scholar
Bachelard, R., Courteille, Ph. W., Kaiser, R. and Piovella, N. 2012b Resonances in Mie scattering by an inhomogeneous atomic cloud. EPL 97, 14004.CrossRefGoogle Scholar
Bachelard, R., Piovella, N. and Courteille, Ph. W. 2011 Cooperative scattering and radiation pressure force in dense atomic clouds. Phys. Rev. A 84, 013821.CrossRefGoogle Scholar
Bender, H., Stehle, C., Slama, S., Kaiser, R., Piovella, N., Zimmermann, C. and Courteille, Ph. W. 2010 Observation of cooperative Mie scattering from an ultracold atomic cloud. Phys. Rev. A 82, 011404.CrossRefGoogle Scholar
Bienaimé, T., Bux, S., Lucioni, E., Courteille, Ph. W., Piovella, N. and Kaiser, R. 2010 Observation of cooperative radiation pressure in presence of disorder. Phys. Rev. Lett. 104, 183602.CrossRefGoogle Scholar
Courteille, Ph. W., Bux, S., Lucioni, E., Lauber, K., Bienaimé, T., Kaiser, R. and Piovella, N. 2010 Modification of radiation pressure due to cooperative scattering of light. Eur. J. Phys. D 58, 69.Google Scholar
Fermi, E. 1927 Un metodo statistico per la determinazione di alcune prioprietà dell'atomo. Rend. Accad. Naz. Lincei 6, 602607.Google Scholar
Friedberg, R., Hartman, S. R. and Manassah, J. T. 1973 Frequency shifts in emission and absorption by resonant systems of two-level atoms. Phys. Rep. 7, 101.CrossRefGoogle Scholar
Gordon, J. P. and Ashkin, A. 1980 Motion of atoms in a radiation trap. Phys. Rev. A 21, 1980.CrossRefGoogle Scholar
Martin, P. A. 2002 Acoustic scattering by inhomogeneous spheres. J. Acoust. Soc. Am. 111, 2013.CrossRefGoogle ScholarPubMed
Mendonça, J. T., Kaiser, R., Terças, H. and Loureiro, J. 2008 Collective oscillations in ultracold atomic gas. Phys. Rev. A 78, 013408.CrossRefGoogle Scholar
Mendonça, J. T. and Terças, H. 2013 Physics of ultra-cold matter. In: Springer Series on Atomic, Optical, and Plasma Physics, Vol. 70. Springer, Berlin.Google Scholar
Mie, G. 1908 Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Ann. Phys. 330, 377.CrossRefGoogle Scholar
Nussenzveig, H. M. 1992 Diffraction Effects in Semiclassical Scattering. Cambridge University Press, Cambridge UK.CrossRefGoogle Scholar
Oraevsky, A. N. 2002 Acoustic scattering by inhomogeneous spheres. Quantum. Electron. 32, 377.CrossRefGoogle Scholar
Prasad, S. and Glauber, R. J. 2010 Coherent radiation by a spherical medium of resonant atoms. Phys. Rev. A 82, 063805.CrossRefGoogle Scholar
Scully, M. O., Fry, E. S., Ooi, C. H. R. and Wokiewicz K. 2006 Directed spontaneous emission from an extended ensemble of n atoms: timing is everything. Phys. Rev. Lett. 96, 010501.CrossRefGoogle Scholar
Scully, M. O. and Svidzinsky, A. A. 2009 The effects of the $n$ atom collective lamb shift on single photon superradiance. Phys. Lett. A 373, 1283.CrossRefGoogle Scholar
Scully, M. O. and Svidzinsky, A. A. 2010 The lamb shift – yesterday, today, and tomorrow. Science 328, 1239.CrossRefGoogle ScholarPubMed
Svidzinsky, A. A., Chang, J. T. and Scully, M. O. 2008 Dynamical evolution of correlated spontaneous emission of a single photon from a uniformly excited cloud of n atoms. Phys. Rev. Lett. 100, 160504.CrossRefGoogle ScholarPubMed
Svidzinsky, A. A., Chang, J.-T. and Scully, M. O. 2010 Cooperative spontaneous emission of n atoms: many-body eigenstates, the effect of virtual lamb shift processes, and analogy with radiation of n classical oscillators. Phys. Rev. A 81, 053821.CrossRefGoogle Scholar
Thomas, L. H. 1927 The calculation of atomic fields. Proc. Cambridge Phil. Soc. 23, 542548.CrossRefGoogle Scholar
van de Hulst, H. C. 1981 Light Scattering by Small Particles. Dover, New York, USA.Google Scholar