Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T22:18:10.907Z Has data issue: false hasContentIssue false

A fluid description of plasma double-layers

Published online by Cambridge University Press:  13 March 2009

J. S. Levine
Affiliation:
Institute for Plasma Research, Stanford University, CA 94305, USA
F. W. Crawford
Affiliation:
Institute for Plasma Research, Stanford University, CA 94305, USA

Abstract

This paper describes the space-charge double-layer that forms between two plasmas with different densities and thermal energies. Three progressively more realistic models are treated by fluid theory, taking into account four species of particles: electrons and ions reflected by the double-layer, and electrons and ions transmitted through it. First, the two plasmas are assumed to be cold, and the self-consistent potential, electric field and space-charge distributions within the double-layer are determined. Second, the effects of thermal velocities are taken into account for the reflected particles, and the modifications to the cold plasma solutions are established. Third, the further modifications due to thermal velocities of the transmitted particles are examined. The applicability of a one-dimensional fluid description, rather than plasma kinetic theory, is discussed. One valuable product of this description is the potential difference across the double- layer in terms of the parameters of the two plasmas which it separates. A useful length parameter is defined characterizing the distance over which most of this potential is dropped. Comparisons are then made between theoretical predictions, and double-layer potentials and lengths deduced from laboratory and space plasma experiments.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alfvén, H. & Carlqvist, P. 1967 Solar Phys. 1, 220.CrossRefGoogle Scholar
Andersson, D., Babió, M., Sandahl, S. & Torvén, S. 1969 Proceedings of 9th International Conference on Phenomena in Ionized Gases, p. 142. Academy of the Socialist Republic of Romania.Google Scholar
Andrews, J. G. & Allen, J. E. 1971. Proc. Roy. Soc. A 320, 459.Google Scholar
Armstrong, R. J. 1975 Proceedings of 12th International Conference on Phenomena in Ionized Gases, p. 124. North-Holland.Google Scholar
Armstrong, R. J. & Torvén, S. 1974 Report no. 10–74, The Auroral Observatory, Tromsø.Google Scholar
Babić, M. & Torvén, S. 1974 Report TRITA-EPP-74–02, Royal Institute of Technology Department of Electron Physics, Stockholm.Google Scholar
Block, L. P. 1972 Cosmic Electrodynamics, 3, 349.Google Scholar
Bohm, D. 1949 The Characteristics of Electrical Discharges in Magnetic Fields (ed. Guthrie, A. & Wakerling, R. K.), p. 77. McGraw-Hill.Google Scholar
Carlqvist, P. 1969 Solar Phys. 7, 377.CrossRefGoogle Scholar
Carlqvist, P. 1978 Astrophys. Space Sci. Library, Reidel (in press).Google Scholar
Coakley, P., Hershkowitz, N., Hubbard, R. & Joyce, G. 1978 Phys. Rev. Lett. 40, 230.CrossRefGoogle Scholar
Crawford, F. W. & Cannara, A. B. 1965 J. Appl. Phys. 36, 3135.CrossRefGoogle Scholar
Crawford, F. W. & Freeston, I. L. 1963 Proceedings of 6th International Conference on Phenomena in Ionized Gases, p. 461. SERMA.Google Scholar
DeGroot, J. S., Barnes, C., Walstead, A. E. & Buneman, O. 1977 Phys. Rev. Lett. 38, 1283.CrossRefGoogle Scholar
Goertaz, C. K. & Joyce, G. 1975 Astrophys. Space Sci. 32, 165.CrossRefGoogle Scholar
Hasan, S. S. & Ter, Haar D. 1978 Astrophys. Space Sci. 56, 89.CrossRefGoogle Scholar
Hubbard, R. F. & Joyce, G. 1978 Report 78–37, University of Iowa, Department of Physics and Astronomy, Iowa City.Google Scholar
Jacobsen, R. A. & Eubank, H. P. 1973 Plasma Phys. 15, 243.CrossRefGoogle Scholar
Joyce, G. & Hubbard, R. F. 1978 J. Plasma Phys. 20, 391.CrossRefGoogle Scholar
Kan, J. R. 1975 J. Geophys. Res. 80, 2089.CrossRefGoogle Scholar
Knorr, G. & Goertz, C. K. 1974 Astrophys. Space. Sci. 31, 209.CrossRefGoogle Scholar
Langmuir, I. 1929 Phys. Rev. 33, 954.CrossRefGoogle Scholar
Levine, J. S., Ilić, D. B. & Crawford, F. W. 1978 J. Geomag. Geoelectr. 30, 461.CrossRefGoogle Scholar
Lutsenko, E. I., Sereda, N. D. & Kontsevi, L. M. 1976 Soviet Phys. Tech. Phys. 20, 498.Google Scholar
Montgomery, D. & Joyce, G. 1969 J. Plasma Phys. 3, 1.CrossRefGoogle Scholar
Mozer, F. S., Carlson, C. W., Hudson, M. K., Torbet, R. B., Parady, B., Yatteau, J. & Kelley, M. C. 1977 Phys. Rev. Lett. 38, 292.CrossRefGoogle Scholar
Penrose, O. 1960 Phys. Fluids, 3, 258.CrossRefGoogle Scholar
Prewett, P. D. & Allen, J. E. 1976 Proc. Roy. Soc. A, 348, 435.Google Scholar
Quon, B. H. & Wong, A. Y. 1976 Phys. Rev. Lett. 37, 1393.CrossRefGoogle Scholar
Sandahl, S. 1971, Physica Scripta, 3, 275.CrossRefGoogle Scholar
Schott, L. 1968 Plasma Diagnostics (ed. Lochte-Holtgreven, W.), p. 684. North-Holland.Google Scholar
Shawhan, S. D., Fälthammar, C.-G. & Block, L. P. 1978 J. Geophys. Res. 83, 1049.CrossRefGoogle Scholar
Smith, R. A. & Goertz, C. K. 1978 J. Geophys. Res. 83, 2617.CrossRefGoogle Scholar
Swift, D. W. 1975 J. Geophys. Res. 80, 2096.CrossRefGoogle Scholar
Swift, D. W. 1976 J. Geophys. Res. 81, 3935.CrossRefGoogle Scholar
Torvén, S. 1978 Astrophys. Space Sci. Library, Reidol (in press).Google Scholar
Torvén, S. & Andersson, D. 1978 Report TRITA-EPP-78–12, Royal Institute of Technology, Departments of Plasma and Electron Physics, Stockholm.Google Scholar
Wahlberg, C. 1977 J. Plasma Phys. 18, 415.CrossRefGoogle Scholar