Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T22:08:17.006Z Has data issue: false hasContentIssue false

Electron dynamics inside a vacuum tube diode through linear differential equations

Published online by Cambridge University Press:  13 December 2013

Gabriel González*
Affiliation:
Departamento de Matemáticas y Física, Instituto Tecnológico y de Estudios Superiores de Occidente, Periférico Sur Manuel Gómez Morín 8585 C.P. 45604, Tlaquepaque, Jal., Mexico
Fco. Javier González Orozco
Affiliation:
Departamento de Matemáticas y Física, Instituto Tecnológico y de Estudios Superiores de Occidente, Periférico Sur Manuel Gómez Morín 8585 C.P. 45604, Tlaquepaque, Jal., Mexico
*
Email address for correspondence: gabrielglez@iteso.mx

Abstract

In this paper we analyze the motion of charged particles in a vacuum tube diode by solving linear differential equations. Our analysis is based on expressing the volume charge density as a function of the current density and coordinates only, i.e. ρ=ρ(J,z), while in the usual scheme the volume charge density is expressed as a function of the current density and electrostatic potential, i.e. ρ=ρ(J,V). We show that, in the case of slow varying charge density, the space-charge-limited current is reduced up to 50%. Our approach gives the well-known behavior of the classical current density proportional to the three-halves power of the bias potential and inversely proportional to the square of the gap distance between electrodes, and does not require the solution of the nonlinear differential equation normally associated with the Child–Langmuir formulation.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ang, L. K., Kwan, T. J. T. and Lau, Y. Y. 2003 New scaling of Child–Langmuir law in the quantum regime. Phys. Rev. Lett. 91, 208303-1–208303-4.Google Scholar
Barbour, J. P., Dolan, W. W., Trolan, J. K., Martin, E. E. and Dyke, W. P. 1953 Space-charge effects in field emission. Phys. Rev. 92, 4551.Google Scholar
Child, C. D. 1911 Discharge from hot CaO. Phys. Rev. 32, 492511.Google Scholar
Forbes, Richard G. 2008 Exact analysis of surface field reduction due to field-emitted vacuum space charge, in parallel-plane geometry, using simple dimensionless equations. J. Appl. Phys. 104, 084303.Google Scholar
Jaffé, G. 1944 On the currents carried by electrons of uniform initial velocity. Phys. Rev. 65, 9198.CrossRefGoogle Scholar
Jensen, Kevin L., Lebowitz, J., Lau, Y. Y. and Luginsland, J. 2012 Space charge effects and quantum effects on electron emission. J. Appl. Phys. 111, 054917.Google Scholar
Jory, H. R. and Trivelpiece, A. W. 1969 Exact relativistic solution for the one-dimensional diode. J. Appl. Phys. 40, 39243926.CrossRefGoogle Scholar
Langmuir, I. 1913 The effect of space charge and residual gases on thermionic currents in high vacuum. Phys. Rev. 2, 450486.Google Scholar
Langmuir, I. 1923 The effect of space charge and initial velocities on the potential distribution and thermionic current between parallel plane electrodes. Phys. Rev. 21, 419435.Google Scholar
Langmuir, I. and Blodgett, K. B. 1923 Currents limited by space charge between coaxial cylinders. Phys. Rev. 22, 347356.Google Scholar
Langmuir, I. and Blodgett, K. B. 1924 Currents limited by space charge between concentric spheres. Phys. Rev. 24, 4959.Google Scholar
Lau, Y. Y., Chernin, D., Colombant, D. G. and Ho, P. T. 1991 Quantum extension of Child–Langmuir law. Phys. Rev. Lett. 66, 14461449.Google Scholar
Lebedev, N. N. 1972 Special Functions and Their Applications. Mineola, NY: Dover.Google Scholar
Page, L. and Adams, N. I. Jr. 1945 Space charge between coaxial cylinders. Phys. Rev. 68, 126129.Google Scholar
Plonsey, R. and Collin, R. E. 1961 Principles and Applications of Electromagnetic Fields. New York, NY: McGraw-Hill.Google Scholar
Pollak, Gerald L. and Stump, Daniel R. 2002 Electromagnetism. Boston, MA: Addison-Wesley.Google Scholar
Rokhlenko, A., Jensen, K. L. and Lebowitz, J. L. 2010 Space charge effects in field emission: one-dimensional theory. J. Appl. Phys. 107, 014904.CrossRefGoogle Scholar
Umstattd, R. J., Carr, C. G., Frenzen, C. L., Luginsland, J. W. and Lau, Y. Y. 2005 A simple physical derivation of Child–Langmuir space-charge-limited emission using vacuum capacitance. Am. J. Phys. 73, 160163.CrossRefGoogle Scholar