Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T21:32:40.290Z Has data issue: false hasContentIssue false

Electromagnetism of one-component plasmas of massless fermions

Published online by Cambridge University Press:  11 August 2023

V.M. Rylyuk*
Affiliation:
National Academy of Sciences of Ukraine “Center for Problems of Marine Geology, Geoecology and Sedimentary Ore Formation of the NAS of Ukraine”, Kyiv, 01054, Ukraine
I.M. Tkachenko
Affiliation:
Departament de Matemàtica Aplicada, Universitat Poliècnica de València, Valencia, 46022, Spain Al-Farabi Kazakh National University, Almaty, 050040, Kazakhstan
*
Email address for correspondence: rvm@onu.edu.ua

Abstract

We present a theoretical study of two- and three-dimensional massless Dirac one-component plasmas embedded in a constant uniform magnetic field. We determine the wavefunctions and Landau energy levels of a massless Dirac fermion in a constant magnetic field. On this basis we consider magnetism of Fermi fluids of massless charged particles. We show that such a three-dimensional Dirac plasma consisting of fermions with the same helicity has its own magnetic moment. We also consider the limit of strong magnetic fields and investigate the De Haas–van Alphen effect. We derive the Kubo formula for the electrical conductivity tensor of massless Dirac plasmas and consider the Shubnikov–de Haas effect. In addition, we propose a model of the static conductivity tensor and employ the matrix version of the classical method of moments to derive a Drude-like formula for the dynamic conductivity tensor for massless Dirac plasmas. We find that the electrical conductivity tensor for Dirac fermions with the right helicity is not isotropic in the plane perpendicular to the magnetic field.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrikosov, A.A. 1988 Fundamentals of the Theory of Metals. Elsevier Science Publishers B. V.Google Scholar
Adamyan, V.M. & Tkachenko, I.M. 2000 Solution of the truncated matrix Hamburger moment problem according to M.G. Krein. In Operator Theory: Advances and Applications (ed. Verlag, Birkhäuser), vol. 118, pp. 3351. Birkhäuser.Google Scholar
Akhiezer, N.I. 1965 The Classical Moment Problem and Some Related Questions in Analysis. Hafner Publishing Company.Google Scholar
Akhiezer, A.I. & Peletminskii, S.V. 1981 Methods of Statistical Physics. Pergamon Press.Google Scholar
Andersen, K., Jacobsen, K.W. & Thygesen, K.S. 2014 Plasmons on the edge of $\textrm {MoS}_2$ nanostructures. Phys. Rev. B 90, 161410(R).CrossRefGoogle Scholar
Berestetskii, V.B., Pitaevskii, L.P. & Lifshitz, E.M. 1982 Quantum Electrodynamics, 2nd edn. Course of Theoretical Physics, vol. 4. Butterworth-Heinemann.Google Scholar
Bjorken, J.D. & Drell, S.D. 1964 Relativistic Quantum Mechanics. McGraw-Hill.Google Scholar
Blank, A.Y. & Kaner, E.A. 1966 The phonon spectrum of metals in a magnetic field. Zh. Eksp. Teor. Fiz. 50, 1013 [Sov. Phys. JETP 23, 673 (1966)].Google Scholar
Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S. & Geim, A.K. 2009 The electronic properties of graphene. Rev. Mod. Phys. 81, 109162.CrossRefGoogle Scholar
Enaldiev, V.V. 2018 Collective excitations in a two-component one-dimensional massless Dirac plasma. Phys. Rev. B 98, 155417-1155417-8.CrossRefGoogle Scholar
Heinz, U. 2009 The strongly coupled quark–gluon plasma created at RHIC. J. Phys. A 42, 214003214010; Thoma, M. H. 2009 What can we learn from electromagnetic plasmas about the quark–gluon plasma? J. Phys. A 42, 214004–214015.CrossRefGoogle Scholar
Katsnelson, M.I., Novoselov, K.S. & Geim, A.K. 2006 Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2 (9), 620625.CrossRefGoogle Scholar
Kovalishina, I.V. 1983 New aspects of the classical problem of moments. Izv. Akad. Nauk. Ser. Mat. 47, 455 [Math. USSR Izv. 22, 419 (1984)].Google Scholar
Krein, M.G. & Nudel'man, A.A. 1977 The Markov Moment Problem and Extremal Problems. Trans. of Math. Monographs 50. American Mathematical Society.CrossRefGoogle Scholar
Landau, L.D. & Lifshitz, E.M. 1980 Statistical Physics, Pt.1. Course of Theoretical Physics, vol. 5. Pergamon Press.Google Scholar
McCann, E. & Fal'ko, V.I. 2006 Landau-level degeneracy and quantum hall effect in a graphite bilayer. Phys. Rev. Lett. 96, 086805.CrossRefGoogle Scholar
Moldabekov, Z., Ludwig, P., Bonitz, M. & Ramazanov, T. 2015 Ion potential in warm dense matter: wake effects due to streaming degeneratee lectrons. Phys. Rev. E 91, 023102-1023102-16 and references therein.CrossRefGoogle Scholar
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V. & Firsov, A.A. 2005 Two dimensional gas of massless Dirac fermions in graphene. Nature 438, 197.CrossRefGoogle ScholarPubMed
Ren, Y.-N., Cheng, Q., Li, S.-Y., Chao, Y., Liu, Y.-W., Lv, K., Zhang, M.-H., Sun, Q.-F. & He, L. 2021 Spatial and magnetic confiement of massless Dirac fermions. Phys. Rev. B 104, L161408-1L161408-6.CrossRefGoogle Scholar
Sarma, S.D. & Hwang, E.H. 2009 Collective modes of the massless Dirac plasma. Phys. Rev. Lett. 102, 206412-1206412-4.Google ScholarPubMed
Sarri, G., Macchi, A., Cecchetti, C.A., Kar, S., Liseykina, T.V., Yang, X.H., Dieckmann, M.E., Fuchs, J., Galimberti, M., Gizzi, L.A, et al. 2012 Dynamics of self-generated, large amplitude magnetic fields following high-intensity laser matter interaction. Phys. Rev. Lett. 109, 205002-1205002-5.CrossRefGoogle ScholarPubMed
Shaisultanov, R., Lyubarsky, Y. & Eichler, D. 2012 Stream instabilities in relativistically hot plasma. Astrophys. J. 744, 182189.CrossRefGoogle Scholar
Skobov, V.G. & Kaner, E.A. 1964 Quantum theory of the propagation of electromagnetic waves in metals in a magnetic gield. Zh. Eksp. Teor. Fiz. 46, 1809 [Sov. Phys. JETP 19, 1219 (1964)].Google Scholar
Tatarakis, M., Watts, I., Beg, F.N., Clark, E.L., Dangor, A.E., Gopal, A., Haines, M.G., Norreys, P.A., Wagner, U., Wei, M.-S., Zepf, M. & Krushelnick, K. 2002 a Measuring huge magnetic fields. Nature 415, 280.CrossRefGoogle ScholarPubMed
Tatarakis, M., Gopal, A., Watts, I., Beg, F.N., Wei, M.S., Dangor, A.E., Krushelnick, K., Wagner, U., Norreys, P.A., Clark, E.L., Zepf, M. & Evans, R.G. 2002 b Measurements of ultrastrong magnetic fields during relativistic laser–plasma interactions. Phys. Plasmas 9, 36423642.CrossRefGoogle Scholar
Wagner, U., Tatarakis, M., Gopal, A., Beg, F.N., Clark, E.L., Dangor, A.E., Evans, R.G., Haines, M.G., Mangles, S.P.D., Norreys, P.A., et al. 2004 Laboratory measurements of 0.7 GG magnetic fields generated during high-intensity laser interactions with dense plasmas. Phys. Rev. E 70, 026401026406.CrossRefGoogle ScholarPubMed
Yamamoto, N. & Yang, D.-L. 2021 Helical magnetic effect and the chiral anomaly. Phys. Rev. D 103, 125003-1125003-7.CrossRefGoogle Scholar
Zubarev, D.N. 1974 Nonequilibrium Statistical Thermodynamic. Plenum.Google Scholar
Supplementary material: PDF

Rylyuk and Tkachenko supplementary material

Rylyuk and Tkachenko supplementary material 1

Download Rylyuk and Tkachenko supplementary material(PDF)
PDF 66.3 KB
Supplementary material: File

Rylyuk and Tkachenko supplementary material

Rylyuk and Tkachenko supplementary material 2

Download Rylyuk and Tkachenko supplementary material(File)
File 115.3 KB