Published online by Cambridge University Press: 21 August 2012
A strongly coupled dusty plasma system consisting of non-thermal electrons, Maxwellian ions, and negatively charged dust in presence of polarization force has been considered. The nonlinear propagation of dust-acoustic shock waves in such a dusty plasma system has been theoretically investigated by employing the reductive perturbation method. The effects of the polarization force and non-thermal electrons, on the properties of these dust-acoustic shock waves are briefly discussed. It is shown that the strong correlation among the charged dust grains is a source of dissipation, and is responsible for the formation of the dust-acoustic shock waves. It has been found that the effects of polarization force and non-thermal electrons significantly modify the basic features of such shock waves. It has been proposed to design a new laboratory experiment, which will be able to identify the basic features of the dust-acoustic shock waves predicted in this present investigation.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.