Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T09:58:46.140Z Has data issue: false hasContentIssue false

Effect of large Larmor radius on the stability of an infinitely conducting inhomogeneous plasma

Published online by Cambridge University Press:  13 March 2009

Nagendra Kumar
Affiliation:
Department of Mathematics, University of Roorkee, Roorkee, India
Krishna M. Srivastava
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, U.S.A.
Vinod Kumar
Affiliation:
Department of Mathematics, University of Roorkee, Roorkee, India

Abstract

The effect of a large Larmor radius on the stability of an infinitely conducting infinitely extended inhomogeneous plasma with two-dimensional magnetic field has been studied. A dispersion relation is obtained for the homogeneous system, and it is found that it is stable and MHD waves propagate. For an inhomogeneous plasma, a dispersion relation is also obtained and discussed for disturbances propagating transverse to inhomogeneity in (a) a cold plasma and (b) an incompressible plasma. It is found that the inhomogeneous system is unstable in both the cases, in agreement with the results of Lee and Roberts. The values of ωr and ωi are computed numerically, and the variations of ωi>0 and the corresponding ωr with the large-Larmor-radius parameter are shown graphically.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bajwa, G. S. & Srivastava, K. M. 1969 Indian J. Phys. 43, 72.Google Scholar
Bertin, G. & Coppi, B. 1985 Astrophys. J. 298, 387.CrossRefGoogle Scholar
Chen, L. & Hasegawa, A. 1974 Phys. Fluids 17, 1399.CrossRefGoogle Scholar
Davila, J. M. 1987 Astron. Astrophys 317, 514.Google Scholar
Defouw, R. J. 1976 Astrophys. J. 209, 266.CrossRefGoogle Scholar
Edwin, P. M. & Roberts, B. 1982 Solar Phys. 76. 239.CrossRefGoogle Scholar
Ershkovich, A. I., McKenzie, J. F. & Axford, W.I. 1989 Astrophys. J. 344, 932.CrossRefGoogle Scholar
Grossmann, W. & Tataronis, J. A. 1973 Z. Phys. 261, 217.CrossRefGoogle Scholar
Hasegawa, A. & Chen, L. 1974 Phys. Rev. Lett. 32, 454.CrossRefGoogle Scholar
Hasegawa, A. & Chen, L. 1975 Phys. Rev. Lett. 35, 370.CrossRefGoogle Scholar
Hasegawa, A. & Chen, L. 1976 Phys. Fluids 19, 1924.CrossRefGoogle Scholar
Hassam, A. B. & Huba, J. D. 1988 Phys. Fluids 31, 2, 318.Google Scholar
Hollweg, J. V. 1987 Astrophys. J. 320, 875.CrossRefGoogle Scholar
Hollweg, J. V. & Roberts, B. 1981 Astrophys. J. 250, 398.CrossRefGoogle Scholar
Hopcraft, K. I. & Smith, P. R. 1986 Planet. Space. Sci. 34, 1253.CrossRefGoogle Scholar
Ionson, J. A. 1978 Astrophys. J. 226, 650.CrossRefGoogle Scholar
Kappraff, J. M. & Tataronis, J. A. 1977 J. Plasma Phys. 18. 209.CrossRefGoogle Scholar
Kieras, C. E. & Tataronis, J. A. 1982 J. Plasma Phys. 28. 395.CrossRefGoogle Scholar
Lanzerotti, L. J., Fukunishi, H., Hasegawa, A. & Chen, L. 1973 Phys. Rer. Lett. 31. 624.CrossRefGoogle Scholar
Lee, M. A. & Roberts, B. 1986 Astrophys. J. 301, 430.CrossRefGoogle Scholar
Musielak, Z. E. & Suess, S. T. 1988 Astrophys. J. 330, 456.CrossRefGoogle Scholar
Rae, I. C. & Roberts, B. 1982 Astrophys. J. 256, 761.CrossRefGoogle Scholar
Roberts, B. 1981 a Solar Phys. 69, 27.CrossRefGoogle Scholar
Roberts, B. 1981 b Solar Phys. 69, 39.CrossRefGoogle Scholar
Shah, S. K. D. & Srivastava, K. M. 1969 Nuovo Cim. 63, 105.CrossRefGoogle Scholar
Spruit, H. C. 1982 Solar Phys. 75, 3.CrossRefGoogle Scholar
Tataronis, J. A. & Grossmann, W. 1976 Nucl. Fusion 164, 667.CrossRefGoogle Scholar
Uberoi, C. 1988 J. Geophys. Res. 93, 295.CrossRefGoogle Scholar