Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T09:15:08.919Z Has data issue: false hasContentIssue false

Distilled shock conditions for ideal magneto-acoustic shock waves in an optically thick medium

Published online by Cambridge University Press:  28 November 2012

D. ONIĆ*
Affiliation:
Department of Astronomy, Faculty of Mathematics, University of Belgrade, Serbia (donic@matf.bg.ac.rs)

Abstract

The shock waves are important features in the analysis of transonic magnetohydrodynamical (MHD) flows where thermal radiation could also be significant. In this paper the effects of black-body radiation on non-relativistic shock waves in an ideal radiation MHD model for the optically thick case are discussed. Distilled shock conditions were derived and discussed for the case of a fixed ratio of specific heats of an ideal gas (γ) and ratio of gas to total pressure (b). The special case, when jumps in γ and/or b are allowed, was also considered.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Auluck, F. C. and Tandon, J. N. 1966 Radiation effects on the propagation of plane perpendicular magnetogasodynamic shock in a plasma. Proc. Nat. Inst. Sci. (India) 32A, 4.Google Scholar
Castor, J. 2004 Radiation Hydrodynamics. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Cox, J. P. and Giuli, R. T. 1968 Principles of Stellar Structure, Vol I. Newark, NJ: Gordon and Breach.Google Scholar
deHoffmann, F. Hoffmann, F. and Teller, E. 1950 Magneto-hydrodynamic shocks. Phys. Rev. 80, 692.Google Scholar
Delmont, P. and Keppens, R. 2011 Parameter regimes for slow, intermediate and fast MHD shocks. J. Plasma Phys. 77, 207.CrossRefGoogle Scholar
Doss, F. W., Drake, R. P. and Myra, E. S. 2011 Oblique radiative shocks, including their interactions with nonradiative polytropic shocks. Phys. Plasmas 18, 056901.CrossRefGoogle Scholar
Drake, R. P. 2007 Theory of radiative shocks in optically thick media. Phys. Plasmas 14, 043301.CrossRefGoogle Scholar
Goedbloed, J. P. 2008 Time reversal duality of magneto- hydrodynamic shocks. Phys. Plasmas 15, 062101.CrossRefGoogle Scholar
Goedbloed, J. P. and Poedts, S. 2004 Principles of Magneto- hydrodynamics. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Goedbloed, J. P., Poedts, S. and Keppens, R. 2010 Advanced Magnetohydrodynamics. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Li, J., Li, J. and Meng, G. 2011 Reversal of Hugoniot locus for strong shocks due to radiation. Phys. Plasmas 18, 042301.CrossRefGoogle Scholar
McClarren, R., Drake, R. P., Morel, J. E. and Holloway, J. P. 2010 Theory of radiative shocks in the mixed, optically thick-thin case. Phys. Plasmas 17, 093301.CrossRefGoogle Scholar
Pai, S.-I. 1966 Radiation Gas Dynamics. New York: Springer-Verlag.CrossRefGoogle Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. 1992 Numerical Recipes in C. Cambridge, UK: Cambridge University Press.Google Scholar
Rose, W. K. 1998 Advanced Stellar Astrophysics. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Treumann, R. A. 2009 Fundamentals of collisionless shocks for astrophysical application. 1. Non-relativistic shocks. Astron. Astrophys. Rev. 17, 409.CrossRefGoogle Scholar
Verma, B. G. and Srivastava, S. K. 1972 Magneto-radiative supersonic flow with variable specific heat. Pure Appl. Geophys. 93, 91.CrossRefGoogle Scholar