Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T19:32:25.805Z Has data issue: false hasContentIssue false

Dissipative instability under weak beam–plasma coupling

Published online by Cambridge University Press:  07 March 2012

EDUARD V. ROSTOMYAN*
Affiliation:
Institute of Radiophysics & Electronics, National Academy of Sciences of Armenia, Alikhanyan Str. 1, Ashtarak, 0203, Armenia (eduard_rostomyan@mail.ru)

Abstract

Beam–plasma interaction is investigated in a model of plasma microwave oscillator: waveguide with spatially separated plasma and beam layers of finite thicknesses. Investigation is carried out in general form without specifying shape of the waveguide in cross section. Approach is based on perturbation theory over wave coupling. Spatial separation implies weak beam–plasma interaction that exhibits many specific features. Developing instability is caused by the growth of the negative energy beam wave. It is shown that upon weak coupling presence, dissipation leads to a new type of dissipative beam instability. Its maximal growth rate is inversely proportional to collision frequency in plasma. The growth rate of this instability is obtained for an arbitrary level of dissipation. Basic parameters of instability show that its properties cannot be neglected upon design of high-power, high-frequency plasma-filled generators/amplifiers based on relativistic e-beams.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Barker, R. J. and Schamiloglu, E., eds. 2001 High-Power Microwave Sources and Technologies. New York, NY: Willey-IEEE, 528 pp.CrossRefGoogle Scholar
[2]Birau, M., Krasil'nikov, M. A., Kuzelev, M. V. and Rukhadze, A. A. 1997 Phys. Usp. 40, 975.CrossRefGoogle Scholar
[3]Kuzelev, M. V. and Rukhadze, A. A. 2000 Plasma Phys. Rep. 26, 231; Kuzelev, M. V., Loza, O. T., Rukhadze, A. A., Strelkov, P. S. and Shkvarunets, A. G. 2001 Plasma Phys. Rep. 27, 669.CrossRefGoogle Scholar
[4]Goeble, D. M., Carmel, Y. C. and Nusinovich, G. S. 1999 Phys. Plasmas 6, 2225.CrossRefGoogle Scholar
[5]Nusinovich, G. S., Mitin, L. A. and Vlasov, A. N. 1997 Phys. Plasmas 4, 4394.CrossRefGoogle Scholar
[6]Gold, S. H. and Nusinovich, G. S. 1997 Rev. Sci. Instrum. 68 (11), 3945.CrossRefGoogle Scholar
[7]Ponomarev, A. V. and Strelkov, P. S. 2004 Plasma Phys. Rep. 30 (1), 62.CrossRefGoogle Scholar
[8]Bogdankevich, I. L., Ivanov, I. E., Loza, O. T., Strelkov, P. S., Ul'yanov, D. K. and Garate, E. 2007 Techn. Phys. Lett. 33 (6), 480.CrossRefGoogle Scholar
[9]Bogdankevich, I. L., Rukhadze, A. A., Strelkov, P. S. and Tarakanov, V. P. 2003 In: Problems of Atomic Science and Technology” series. Plasma Phys. 1, 102.Google Scholar
[10]Rostomyan, E. V. 2001 Europ. J. Appl. Phys. 14, 177.CrossRefGoogle Scholar
[11]Karbushev, N. I. and Rostomyan, E. V. 2008 Phys. Lett. A 372, 4484.CrossRefGoogle Scholar
[12]Rostomyan, E. V. 2007 Europhys. Lett. 77, 45001.CrossRefGoogle Scholar
[13]Reiser, M. 1994 Theory and Design of Charged Particle Beams. New York: John Wiley.CrossRefGoogle Scholar
[14]Bohmer, H., Chang, J. and Raether, M. 1971 Phys. Fluids 14, 150.CrossRefGoogle Scholar