Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T21:27:05.108Z Has data issue: false hasContentIssue false

Diocotron instability of a warm electron beam in crossed fields

Published online by Cambridge University Press:  13 March 2009

Hee J. Lee
Affiliation:
Department of Physics, Hanyang University, Seoul 133–791, Korea
Kwang-Sup Yang
Affiliation:
Department of Physics, Hanyang University, Seoul 133–791, Korea

Abstract

The warm-fluid equation derived from the drift kinetic equation is solved numerically to investigate the electrostatic low-frequency stability of an electron ribbon beam drifting in the crossed-fields of a planar magnetron. The temperature effect is manifested only for oblique propagation with respect to the drifting beam direction. The dispersion relation takes the form ω = ω(k⊥/ks∥) = ω(ks∥/k⊥), where k⊥ and k⊥ are respectively the components of the surface wave vector k parallel and perpendicular to the magnetic field. The obliqueness of the propagation direction and the non-zero temperature give rise to a resonant instability, in addition to the diocotron instability, and the wavenumber corresponding to the maximum diocotron growth rate shifts as the temperature changes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramowitz, M. & Stegun, I. A. 1965 Handbook of Mathematical Functions. Dover, New York.Google Scholar
Buneman, O., Levy, R. H., & Linson, L. M. 1966 J. Appl. Phys. 37, 3203.CrossRefGoogle Scholar
Chernin, D. & Lau, Y. Y. 1984 Phys. Fluids 27, 2319.CrossRefGoogle Scholar
Davidson, R. C. 1990 Physics of Nonneutral Plasmas. Addison-Wesley, Reading, Massachusetts.Google Scholar
Davidson, R. C. & Tsang, K. 1985 Phys Fluids 28, 1169.CrossRefGoogle Scholar
Davidson, R. C., Tsang, K. T, & Swegle, J. A., 1984 Phys. Fluids 27, 2332.CrossRefGoogle Scholar
De Grassie, J. S. & Malmberg, J. H. 1980 Phys. Fluids 23, 63.CrossRefGoogle Scholar
Fried, B. F. & Conte, S. 1961 The Plasma Dispersion Function. Academic Press, New York.Google Scholar
Holm, D. D. & Kupershmidt, B. A. 1986 Phys. Fluids 29, 49.CrossRefGoogle Scholar
Lee, H. J., Kaup, D. J. & Thomas, G. E. 1988 J. Plasma Phys. 40, 535.CrossRefGoogle Scholar
Lee, S. H. & Lee, H. J. 1988 J. Korean Phys. Soc. 21, 253.Google Scholar
Swegle, J. 1993 Phys. Fluids 26, 1970.Google Scholar
Swegle, J. & Ott, E. 1981 Phys. Fluids 24, 1821.CrossRefGoogle Scholar