Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T08:47:25.276Z Has data issue: false hasContentIssue false

Collisionless microinstabilities in stellarators. Part 4. The ion-driven trapped-electron mode

Published online by Cambridge University Press:  22 August 2017

G. G. Plunk*
Affiliation:
Max-Planck-Institut für Plasmaphysik, EURATOM Association, 17491 Greifswald, Germany
J. W. Connor
Affiliation:
Culham Centre for Fusion Energy, Abingdon OX14 3DB, UK
P. Helander
Affiliation:
Max-Planck-Institut für Plasmaphysik, EURATOM Association, 17491 Greifswald, Germany
*
Email address for correspondence: gplunk@ipp.mpg.de

Abstract

Optimised stellarators and other magnetic-confinement devices having the property that the average magnetic curvature is favourable for all particle orbits are called maximum-$J$ devices. They have recently been shown to be immune to trapped-particle instabilities driven by the density gradient. Gyrokinetic simulations reveal, however, that another instability can arise, which is also associated with particle trapping but causes less transport than typical trapped-electron modes. The nature of this instability is clarified here. It is shown to be similar to the ‘ubiquitous mode’ in tokamaks and is driven by ion free energy, but requires trapped electrons to exist.

Type
Research Article
Copyright
© Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Coppi, B. & Pegoraro, F. 1977 Theory of the ubiquitous mode. Nucl. Fusion 17 (5), 969994.Google Scholar
Helander, P., Bird, T., Jenko, F., Kleiber, R., Plunk, G., Proll, J., Riemann, J. & Xanthopoulos, P. 2015 Advances in stellarator gyrokinetics. Nucl. Fusion 55 (5), 053030.Google Scholar
Helander, P. & Nührenberg, J. 2009 Bootstrap current and neoclassical transport in quasi-isodynamic stellarators. Plasma Phys. Control. Fusion 51 (5), 055004.Google Scholar
Helander, P., Proll, J. & Plunk, G. 2013 Collisionless microinstabilities in stellarators. I. Analytical theory of trapped-particle modes. Phys. Plasmas 20 (12), 122505.Google Scholar
Kadomtsev, B. & Pogutse, O. 1970 Turbulence in toroidal systems. In Reviews of Plasma Physics (ed. Leontovich, M. A.), vol. 5, pp. 249400. Springer.Google Scholar
Kammerer, M., Merz, F. & Jenko, F. 2008 Exceptional points in linear gyrokinetics. Phys. Plasmas 17 (5), 052102.Google Scholar
Kesner, J. & Hastie, R. J. 2002 Electrostatic drift modes in a closed field line configuration. Phys. Plasmas 9 (2), 395400.Google Scholar
Nakata, M., Nunami, M., Sugama, H. & Watanabe, T.-H. 2016 Impact of hydrogen isotope species on microinstabilities in helical plasmas. Plasma Phys. Control. Fusion 58, 074008.Google Scholar
Nührenberg, J. 2010 Development of quasi-isodynamic stellarators. Plasma Phys. Control. Fusion 52 (12), 124003.Google Scholar
Plunk, G. G., Helander, P., Xanthopoulos, P. & Connor, J. W. 2014 Collisionless microinstabilities in stellarators. III. The ion-temperature-gradient mode. Phys. Plasmas 21 (3), 032112.Google Scholar
Proll, J., Helander, P., Connor, J. & Plunk, G. 2012 Resilience of quasi-isodynamic stellarators against trapped-particle instabilities. Phys. Rev. Lett. 24, 245002.Google Scholar
Proll, J., Xanthopoulos, P. & Helander, P. 2013 Collisionless microinstabilities in stellarators. II. Numerical simulations. Phys. Plasmas 20 (12), 122506.Google Scholar
Rosenbluth, M. 1968 Low-frequency limit of interchange instability. Phys. Fluids 11, 869872.Google Scholar
Watanabe, T.-H., Sugama, H. & Ferrando-Margalet, S. 2008 Reduction of turbulent transport with zonal flows enhanced in helical systems. Phys. Rev. Lett. 100, 195002.Google Scholar
Xanthopoulos, P., Plunk, G., Zocco, A. & Helander, P. 2016 Intrinsic turbulence stabilization in a stellarator. Phys. Rev. X 6 (2), 021033.Google Scholar