Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T23:46:48.375Z Has data issue: false hasContentIssue false

Colliding Alfvénic wave packets in magnetohydrodynamics, Hall and kinetic simulations

Published online by Cambridge University Press:  20 February 2017

O. Pezzi*
Affiliation:
Dipartimento di Fisica, Università della Calabria, 87036 Rende (CS), Italy
T. N. Parashar
Affiliation:
Department of Physics and Astronomy, University of Delaware, DE 19716, USA
S. Servidio
Affiliation:
Dipartimento di Fisica, Università della Calabria, 87036 Rende (CS), Italy
F. Valentini
Affiliation:
Dipartimento di Fisica, Università della Calabria, 87036 Rende (CS), Italy
C. L. Vásconez
Affiliation:
Departamento de Física, Escuela Politécnica Nacional, Quito, Ecuador
Y. Yang
Affiliation:
Department of Physics and Astronomy, University of Delaware, DE 19716, USA
F. Malara
Affiliation:
Dipartimento di Fisica, Università della Calabria, 87036 Rende (CS), Italy
W. H. Matthaeus
Affiliation:
Department of Physics and Astronomy, University of Delaware, DE 19716, USA
P. Veltri
Affiliation:
Dipartimento di Fisica, Università della Calabria, 87036 Rende (CS), Italy
*
Email address for correspondence: oreste.pezzi@fis.unical.it

Abstract

The analysis of the Parker–Moffatt problem, recently revisited in Pezzi et al. (Astrophys. J., vol. 834, 2017, p. 166), is here extended by including Hall magnetohydrodynamics and two hybrid kinetic Vlasov–Maxwell numerical models. The presence of dispersive and kinetic features is studied in detail and a comparison between the two kinetic codes is also reported. Focus on the presence of non-Maxwellian signatures shows that – during the collision – regions characterized by strong temperature anisotropy are recovered and the proton distribution function displays a beam along the direction of the magnetic field, similar to some recent observations of the solar wind.

Type
Research Article
Copyright
© Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexandrova, O., Carbone, V., Veltri, P. & Sorriso-Valvo, L. 2008 Small-scale energy cascade of the solar wind turbulence. Astrophys. J. 674, 1153.Google Scholar
Aunai, N., Hesse, M. & Kuznetsova, M. 2013 Electron nongyrotropy in the context of collisionless magnetic reconnection. Phys. Plasmas 20, 092903.Google Scholar
Belcher, J. W. & Davis, L. Jr. 1971 Large amplitude Alfvén waves in the interplanetary medium, 2. J. Geophys. Res. 76, 35343563.Google Scholar
Birdsall, C. K. & Langdon, A. B. 2004 Plasma Physics Via Computer Simulation. CRC Press.Google Scholar
Bruno, R., Bavassano, R. & Villante, U. 1985 Evidence for long period Alfvén waves in the inner solar system. J. Geophys. Res. 90, 43734377.Google Scholar
Bruno, R. & Carbone, V. 2013 The solar wind as a turbulence laboratory. Living Rev. Sol. Phys. 10, 1208.Google Scholar
Camporeale, E. & Burgess, D. 2011 The dissipation of solar wind turbulent fluctuations at electron scales. Astrophys. J. 730, 114.Google Scholar
Dawson, J. M. 1932 Particle simulation of plasmas. Rev. Mod. Phys. 55, 403.Google Scholar
Dobrowolny, M., Mangeney, A. & Veltri, P. 1980a Fully developed anisotropic hydromagnetic turbulence in interplanetary space. Phys. Rev. Lett. 45, 144.Google Scholar
Dobrowolny, M., Mangeney, A. & Veltri, P. 1980b Properties of magnetohydrodynamic turbulence in the solar wind. In Solar and Interplanetary Dynamics, Springer.Google Scholar
Elsässer, W. M. 1950 The hydromagnetic equations. Phys. Rev. 79, 183.Google Scholar
Franci, L., Verdini, A., Matteini, L., Landi, S. & Hellinger, P. 2015 Solar wind turbulence from MHD to sub-ion scales: high resolution hybrid simulations. Astrophys. J. Lett. 804, L39.Google Scholar
Galtier, S., Nazarenko, S. V., Newell, A. C. & Poucket, A. 2000 A weak turbulence theory for incompressible magnetohydrodynamics. J. Plasma Phys. 63, 447488.Google Scholar
Gary, S. P., Saito, S. & Narita, Y. 2010 Whistler turbulence wavevector anisotropies: particle-in-cell simulations. Astrophys. J. 716, 1332.CrossRefGoogle Scholar
Goldreich, P. & Sridhar, S. 1995 Toward a theory of interstellar turbulence. 2: strong Alfvénic turbulence. Astrophys. J. 438, 763775.CrossRefGoogle Scholar
Greco, A., Valentini, F., Servidio, S. & Matthaeus, W. H. 2012 Inhomogeneous kinetic effects related to intermittent magnetic discontinuities. Phys. Rev. E 86, 066405.Google Scholar
He, J., Tu, C., Marsch, E., Chen, C. H. K., Wang, L., Pei, Z., Zhang, L., Salem, C. S. & Bale, S. D. 2015 Proton heating in solar wind compressible turbulence with collisions between counter-propagating waves. Astrophys. J. Lett. 83, L30.Google Scholar
Howes, G. G. 2015 The inherently three-dimensional nature of magnetized plasma turbulence. J. Plasma Phys. 81, 325810203.Google Scholar
Howes, G. G. & Nielson, K. D. 2013 Alfvén wave collisions, the fundamental building block of plasma turbulence. I. Asymptotic solution. Phys. Plasmas 20, 072302.Google Scholar
Iroshnikov, R. S. 1964 Turbulence of a conducting fluid in a strong magnetic field. Sov. Astron. 7, 566.Google Scholar
Karimabadi, H., Roytershteyn, V., Daughton, W. & Liu, Y. 2013 Recent evolution in the theory of magnetic reconnection and its connection with turbulence. Space Sci. Rev. 178, 307323.Google Scholar
Kraichnan, R. H. 1965 Inertial range spectrum of hydromagnetic turbulence. Phys. Fluids 8, 13851387.Google Scholar
Li, T. C., Howes, G. G., Klein, K. G. & TenBarge, J. M. 2016 Energy dissipation and Landau damping in two- and three-dimensional plasma turbulence. Astrophys. J. Lett. 832, L24.CrossRefGoogle Scholar
Lion, S., Alexandrova, O. & Zaslavsky, A. 2016 Coherent events and spectral shape at ion kinetic scales in the fast solar wind turbulence. Astrophys. J. 824, 47.CrossRefGoogle Scholar
Malakit, K., Cassak, P. A., Shay, M. A. & Drake, J. F. 2009 The Hall effect in magnetic reconnection: hybrid versus Hall-less hybrid simulations. Geophys. Res. Lett. 36, L07107.Google Scholar
Marsch, E. 2006 Kinetic physics of the solar corona and solar wind. Living Rev. Sol. Phys. 3, 1100.Google Scholar
Matthaeus, W. H., Zank, G. P., Oughton, S., Mullan, D. J. & Dmitruk, P. 1999 Coronal heating by magnetohydrodynamic turbulence driven by reflected low-frequency waves. Astrophys. J. Lett. 523, L93.Google Scholar
Matthaeus, W. H., Zank, G. P., Smith, C. W. & Oughton, S. 1999 Turbulence, spatial transport, and heating of the solar wind. Phys. Rev. Lett. 82, 3444.CrossRefGoogle Scholar
Moffatt, H. K. 1978 Field Generation in Electrically Conducting Fluids. Cambridge University Press.Google Scholar
Ng, C. S. & Bhattacharjee, A. 1996 Interaction of shear-Alfvén wave packets: implication for weak magnetohydrodynamic turbulence in astrophysical plasmas. Astrophys. J. 465, 845.Google Scholar
Nielson, K. D., Howes, G. G. & Dorland, W. 2013 Alfvén wave collisions, the fundamental building block of plasma turbulence. II. Numerical solution. Phys. Plasmas 20, 072303.Google Scholar
Parashar, T. N., Matthaeus, W. H., Shay, M. A. & Wan, M. 2015a Transition from kinetic to MHD behavior in a collisionless plasma. Astrophys. J. 811, 112.Google Scholar
Parashar, T. N., Oughton, S., Matthaeus, W. H. & Wan, M. 2016 Variance anisotropy in kinetic plasmas. Astrophys. J. 824, 44.CrossRefGoogle Scholar
Parashar, T. N., Salem, C., Wicks, R. T., Karimabadi, H., Gary, S. P. & Matthaeus, W. H. 2015b Turbulent dissipation challenge: a community-driven effort. J. Plasma Phys. 81, 905810513.Google Scholar
Parashar, T. N., Shay, M. A., Cassak, P. A. & Matthaeus, W. H. 2009 Kinetic dissipation and anisotropic heating in a turbulent collisionless plasma. Phys. Plasmas 16, 032310.Google Scholar
Parker, E. N. 1979 Cosmical Magnetic Fields: Their Origin and Their Activity. Oxford University Press.Google Scholar
Perrone, D., Alexandrova, O., Mangeney, A., Maksimovic, M., Lacombe, C., Rakoto, V., Kasper, J. C. & Jovanovic, D. 2016 Compressive coherent structures at ion scales in the slow solar wind. Astrophys. J. 826, 196.Google Scholar
Pezzi, O., Parashar, T. N., Servidio, S., Valentini, F., Vásconez, C. L., Yang, Y., Malara, F., Matthaeus, W. H. & Veltri, P. 2017 Revisiting a classic: the Parker–Moffatt problem. Astrophys. J. 834, 166.CrossRefGoogle Scholar
Pucci, F., Vásconez, C. L., Pezzi, O., Servidio, S., Valentini, F., Matthaeus, W. H. & Malara, F. 2016 From Alfvén waves to kinetic Alfvén waves in an inhomogeneous equilibrium structure. J. Geophys. Res. 121, 10241045.Google Scholar
Roberts, O. W., Li, X., Alexandrova, O. & Li, B. 2016 Observations of an MHD Alfvén vortex in the slow solar wind. J. Geophys. Res. 121, 38703881.Google Scholar
Sahraoui, F., Galtier, S. & Belmont, G. 2007 On waves in incompressible Hall magnetohydrodynamics. J. Plasma Phys. 73, 723730.CrossRefGoogle Scholar
Servidio, S., Matthaeus, W. H. & Carbone, V. 2008 Statistical properties of ideal three-dimensional Hall magnetohydrodynamics: the spectral structure of the equilibrium ensemble. Phys. Plasmas 15, 042314.Google Scholar
Servidio, S., Valentini, F., Califano, F. & Veltri, P. 2012 Local kinetic effects in two-dimensional plasma turbulence. Phys. Rev. Lett. 108, 045001.CrossRefGoogle ScholarPubMed
Servidio, S., Valentini, F., Perrone, D., Greco, A., Califano, F., Matthaeus, W. H. & Veltri, P. 2015 A kinetic model of plasma turbulence. J. Plasma Phys. 81, 328510107.Google Scholar
Sridhar, S. & Goldreich., P. 1994 Toward a theory of interstellar turbulence. 1: weak Alfvénic turbulence. Astrophys. J. 432, 612621.Google Scholar
Swisdak, M. 2016 Quantifying gyrotropy in magnetic reconnection. Geophys. Res. Lett. 43, 4349.Google Scholar
Tomczyk, S., McIntosh, S. W., Keil, S. L., Judge, P. G., Schad, T., Seeley, D. H. & Edmondson, J. 2007 Alfvén waves in the solar corona. Science 317, 11921196.Google Scholar
Turner, L. 1986 Hall effects of magnetic relaxation. IEEE Trans. Plasma Sci. 14, 849857.Google Scholar
Valentini, F., Califano, F., Perrone, D., Pegoraro, F. & Veltri, P. 2011 New ion-wave path in the energy cascade. Phys. Rev. Lett. 106, 165002.Google Scholar
Valentini, F., Servidio, S., Perrone, D., Califano, F., Matthaeus, W. H. & Veltri, P. 2014 Hybrid Vlasov–Maxwell simulations of two-dimensional turbulence in plasmas. Phys. Plasmas 21, 082307.Google Scholar
Valentini, F., Travnicek, P., Califano, F., Hellinger, P. & Mangeney, A. 2007 A hybrid-Vlasov model based on the current advance method for the simulation of collisionless magnetized plasma. J. Comput. Phys. 225, 753770.Google Scholar
Vásconez, C. L., Pucci, F., Valentini, F., Servidio, S., Matthaeus, W. H. & Malara, F. 2015 Kinetic Alfvén wave generation by large-scale phase mixing. Astrophys. J. 815, 7.Google Scholar
Velli, M., Grappin, R. & Mangeney, A. 1989 Turbulent cascade of incompressible unidirectional Alfvén waves in the interplanetary medium. Phys. Rev. Lett. 63, 1807.Google Scholar
Verdini, A., Velli, M. & Buchlin, E. 2009 Turbulence in the sub-Alfvénic solar wind driven by reflection of low-frequency Alfvén waves. Astrophys. J. Lett. 700, L39.Google Scholar
Wan, M., Matthaeus, W. H., Roytershteyn, V., Karimabadi, H., Parashar, T., Wu, P. & Shay, M. 2015 Intermittent dissipation and heating in 3D kinetic plasma turbulence. Phys. Rev. Lett. 114, 175002.Google Scholar
Zeiler, A., Biskamp, D., Drake, J. F., Rogers, B. N., Shay, M. A. & Scholer, M. 2002 Three-dimensional particle simulations of collisionless magnetic reconnection. J. Geophys. Res. 107, 1230.Google Scholar