Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T21:20:28.521Z Has data issue: false hasContentIssue false

Cascades in decaying three-dimensional electron magnetohydrodynamic turbulence

Published online by Cambridge University Press:  17 July 2009

CHRISTOPHER J. WAREING
Affiliation:
Department of Applied Mathematics, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK (cjw@maths.leeds.ac.uk)
RAINER HOLLERBACH
Affiliation:
Department of Applied Mathematics, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK (cjw@maths.leeds.ac.uk)

Abstract

Decaying electron magnetohydrodynamic (EMHD) turbulence in three dimensions is studied via high-resolution numerical simulations. The resulting energy spectra asymptotically approach a k−2 law with increasing RB, the ratio of the nonlinear to linear time scales in the governing equation, consistent with theoretical predictions. No evidence is found of a dissipative cutoff, consistent with non-local spectral energy transfer and recent studies of 2D EMHD turbulence. Dissipative cutoffs found in previous studies are explained as artificial effects of hyperdiffusivity. In another similarity to 2D EMHD turbulence, relatively stationary structures are found to develop in time, rather than the variability found in ordinary or MHD turbulence. Further, cascades of energy in 3D EMHD turbulence are found to be suppressed in all directions under the influence of a uniform background field. Energy transfer is further reduced in the direction parallel to the field, displaying scale-dependent anisotropy. Finally, the governing equation is found to yield a weak inverse cascade, at least partially transferring magnetic energy from small to large scales.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berger, M. A. 1997 J. Geophys. Res. 102, 2637.Google Scholar
Biskamp, D., Schwarz, E. and Drake, J. F. 1996 Phys. Rev. Lett. 76, 1264.CrossRefGoogle Scholar
Biskamp, D., Schwarz, E., Zeiler, A., Celani, A. and Drake, J. 1999 Phys. Plasmas 6, 751.CrossRefGoogle Scholar
Biskamp, D. and Müller, W.-C. 1999 Phys. Rev. Lett. 83, 21952198.CrossRefGoogle Scholar
Cho, J. and Lazarian, A. 2004 Astrophys. J. 615, L41.CrossRefGoogle Scholar
Dastgeer, S., Das, A., Kaw, P. and Diamond, P. 2000 Phys. Plasmas 7, 571.CrossRefGoogle Scholar
Dastgeer, S. and Zank, G. P. 2003 Astrophys. J. 599, 715.CrossRefGoogle Scholar
Frigo, M. and Johnson, S. G. 2005 Proc. IEEE 93, 216.CrossRefGoogle Scholar
Galtier, S. 2006 J. Plasma Phys. 72, 721.CrossRefGoogle Scholar
Goldreich, P. and Reisenegger, A. 1992 Astrophys. J. 395, 250258.Google Scholar
Hollerbach, R. and Rüdiger, G. 2002 Mon. Not. R. Astron. Soc. 337, 216.CrossRefGoogle Scholar
Hollerbach, R. and Rüdiger, G. 2004 Mon. Not. R. Astron. Soc. 347, 1237.CrossRefGoogle Scholar
Iroshnikov, P. S. 1964 Sov. Astron. 7, 566.Google Scholar
Kolmogorov, A. N. 1941 Proc. USSR Acad. Sci. 30, 299 (in Russian); 1980 Proc. R. Soc. A 434, 9 (in English).Google Scholar
Kraichnan, R. H. 1965 Phys. Fluids 8, 1385CrossRefGoogle Scholar
Kraichnan, R. H. 1967 Phys. Fluids 10, 1417.CrossRefGoogle Scholar
Oughton, S., Matthaeus, W. H. and Ghosh, S. 1998 Phys. Plasmas 5, 4235.CrossRefGoogle Scholar
Shaikh, D. and Zank, G. P. 2005 Phys. Plasmas 12, 122310.CrossRefGoogle Scholar
Shebalin, J. V., Matthaeus, W. H. and Montgomery, D. 1983 J. Plasma Phys. 29, 525.CrossRefGoogle Scholar
Vainshtein, S. I., Chitre, S. M. and Olinto, A. V. 2000 Phys. Rev. E 61, 4422.Google Scholar
Wareing, C. J. and Hollerbach, R. 2009 Phys. Plasmas 16, 042307 (RH09).CrossRefGoogle Scholar