Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T22:29:17.488Z Has data issue: false hasContentIssue false

Anisotropic potential around charged absorbing small particle in a collisional electronegative plasma with ion drift

Published online by Cambridge University Press:  18 May 2020

Andrey V. Zobnin*
Affiliation:
Joint Institute for High Temperatures Russian Academy of Sciences, Izhorskaya 13 b.2, 125412 Moscow, Russia
*
Email address for correspondence: zobnin@ihed.ras.ru

Abstract

A distribution of the electric potentials around a charged absorbing particle in a drifting weakly ionised collisional plasma with negative ions is calculated in the linear hydrodynamic approach. Coulomb-like asymptote of the electric potential around the absorbing particle deforms under the action of the negative ions’ flow and exhibits a valley profile along the flow behind the particle. The presence of the flowing negative ions can be conducive to string formation in the dust structures at relatively large pressures.

Type
Research Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amemiya, H. 1990 Plasmas with negative ions – probe measurements and charge equilibrium. J. Phys. D: Appl. Phys. 23, 9991014.CrossRefGoogle Scholar
Chaudhuri, M., Khrapak, S. A. & Morfill, G. E. 2007 Effective charge of a small absorbing body in highly collisional plasma subject to an external electric field. Phys. Plasmas 14, 022102.CrossRefGoogle Scholar
Chaudhuri, M., Khrapak, S. A. & Morfill, G. E. 2010 A note on the electrical potential distribution around a test charge in anisotropic collisional plasmas. J. Plasma Phys. 76, 603606.CrossRefGoogle Scholar
Du, C. R., Sütterlin, K. R., Jiang, K., Räth, C., Ivlev, A. V., Khrapak, S., Schwabe, M., Thomas, H. M., Fortov, V. E. & Lipaev, A. M. 2012 Experimental investigation on lane formation in complex plasmas under microgravity conditions. New J. Phys. 14, 073058.Google Scholar
Filippov, A. V., Zagorodny, A. G., Pal’, A. F., Starostin, A. N. & Momot, A. I. 2007 Kinetic description of the screening of the charge of macroparticles in a nonequilibrium plasma. J. Expl Theor. Phys. Lett. 86 (12), 761766.CrossRefGoogle Scholar
Ivlev, A. V., Bartnick, J., Heinen, M., Du, C. R., Nosenko, V. & Löwen, H. 2015 Statistical mechanics where Newton’s third law is broken. Phys. Rev. X 5, 011035.Google Scholar
Ivlev, A. V., Morfill, G. E., Thomas, H. M., Räth, C., Joyce, G., Huber, P., Kompaneets, R., Fortov, V. E., Lipaev, A. M., Molotkov, V. I. et al. 2008 First observation of electrorheological plasmas. Phys. Rev. Lett. 100, 095003.CrossRefGoogle ScholarPubMed
Ivlev, A. V., Thomas, H. M., Räth, C., Joyce, G. & Morfill, G. E. 2011 Complex plasmas in external fields: the role of non-hamiltonian interactions. Phys. Rev. Lett. 106, 155001.CrossRefGoogle ScholarPubMed
Khrapak, S. A., Klumov, B. A. & Mofill, G. 2008 Electric potential around an absorbing body in plasmas: effect of ion–neutral collisions. Phys. Rev. Lett. 100, 225003.CrossRefGoogle ScholarPubMed
Khrapak, S. A., Mofill, G. E., Khrapak, A. G. & D’yachkov, L. G. 2006 Charging properties of a dust grain in collisional plasmas. Phys. Plasmas 13, 052114.CrossRefGoogle Scholar
Klumov, B. A., Ivlev, A. V. & Morfill, G. 2003 The role of negative ions in experiments with complex plasma. J. Expl Theor. Phys. Lett. 78 (5), 300304.CrossRefGoogle Scholar
Kompaneets, R., Konopka, U., Ivlev, A. V., Tsytovich, V. N. & Morfill, G. 2007 Potential around a charged dust particle in a collisional sheath. Phys. Plasmas 14 (5), 052108.CrossRefGoogle Scholar
Kompaneets, R., Morfill, G. E. & Ivlev, A. V. 2016 Wakes in complex plasmas: a self-consistent kinetic theory. Phys. Rev. E 93, 063201.Google ScholarPubMed
Lampe, M., Joyce, G., Gaunguli, G. & Gavrishchaka, V. 2000 Interactions between dust grains in a dusty plasma. Phys. Plasmas 7, 38513861.CrossRefGoogle Scholar
Lapenta, G. 2000 Linear theory of plasma wakes. Phys. Rev. E 62, 11751181.Google ScholarPubMed
Melandsø, F. & Goree, J. 1995 Polarized supersonic plasma flow simulation for charged bodies such as dust particles and spacecraft. Phys. Rev. E 52, 53125326.Google ScholarPubMed
Melzer, A. 2001 Laser-experiments on particle interactions in strongly coupled dusty plasma crystals. Phys. Scr. T 89 (1), 3336.CrossRefGoogle Scholar
Merlino, R. L. & Kim, S. H. 2006 Charge neutralization of dust particles in a plasma with negative ions. Appl. Phys. Lett. 89, 091501.CrossRefGoogle Scholar
Mitic, S., Klumov, B. A., Khrapak, S. A. & Morfill, G. E. 2013 Three dimensional complex plasma structures in a combined radio frequency and direct current discharge. Phys. Plasmas 20, 043701.CrossRefGoogle Scholar
Montgomery, D., Joyce, G. & Sugihara, R. 1968 Inverse third power law for the shielding of test particles. Plasma Phys. 10 (7), 681686.CrossRefGoogle Scholar
Stenflo, L., Yu, M. Y. & Shukla, P. K. 1973 Shielding of a slow test charge in a collisional plasma. Phys. Fluids 16 (3), 450452.CrossRefGoogle Scholar
Su, C. H. & Lam, S. H. 1963 Continuum theory of spherical electrostatic probes. Phys. Fluids 6, 14791491.CrossRefGoogle Scholar
Sütterlin, K. R., Wysocki, A., Ivlev, A. V., Räth, C., Thomas, H. M., Rubin-Zuzic, M., Goedheer, W. J., Fortov, V. E., Lipaev, A. M., Molotcov, V. I. et al. 2009 Dynamic of lane formation in driven binary complex plasmas. Phys. Rev. Lett. 102, 085003.Google Scholar
Zobnin, A. V. 2018 Potential distribution around the charged particle in the collisional weakly ionized plasma in an external electric field. J. Phys.: Conf. Ser. 946, 012157.Google Scholar