Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T22:29:41.606Z Has data issue: false hasContentIssue false

Analysis of the radial and poloidal turbulent transport in the edge tokamak plasma

Published online by Cambridge University Press:  01 March 2013

S. MESHKANI
Affiliation:
Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran (Salari_phy@yahoo.com)
M. GHORANNEVISS
Affiliation:
Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran (Salari_phy@yahoo.com)
M. LAFOUTI
Affiliation:
Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran (Salari_phy@yahoo.com)
A. SALAR ELAHI
Affiliation:
Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran (Salari_phy@yahoo.com)

Abstract

In this paper, turbulent transport in the edge plasma of the IR-T1 tokamak (r/a = 0.9) in the presence of a resonant helical magnetic field (RHF) and a biased limiter has been investigated and analyzed. The time evolution of potential fluctuation, and electric field and turbulent transport have been measured by using two arrays of the Langmuir probes in both the radial and poloidal directions. The experiments have been done in different regimes such as limiter biasing and RHF, and both of them. The analyses have been done by the fast Fourier transport method and their spectral features are obtained with the help of the standard autocorrelation technique. The results show that radial turbulent transport decreases about 60% after positive biasing application, while it increases about 40% after negative biasing. The effect of positive biasing on poloidal turbulent transport displays an increase of about 55%, while the negative bias voltage decreases the poloidal turbulent transport about 30%. Consequently, confinement is improved and plasma density rises significantly due to the applied positive biasing in IR-T1. However, the results are reversed when negative biasing is applied. Also, in this work, the results of the applied RHF (L = 3) are compared with biasing results and analyzed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agah, K.et al. 2012 J. Fusion Energy (in press), doi:10.1007/s10894-012-9563-zGoogle Scholar
Bulanin, V. V.et al. 2006 Plasma Phys. Control. Fusion 48, A101.CrossRefGoogle Scholar
Burell, K. H. 1997 Phys. Plasmas 4, 1499.CrossRefGoogle Scholar
Burell, K. H. 1999 Phys. Plasmas 6, 4418.CrossRefGoogle Scholar
Cabral, J. A. C.et al. 1998 Plasma Phys. Control. Fusion 40, 1001.CrossRefGoogle Scholar
Devynck, P.et al. 2006 Phys. Plasmas 13 (10), 102505102513.CrossRefGoogle Scholar
Emami, M., Ghoranneviss, M., Salar Elahi, A. and Rad, A. R. 2009 J. Plasma Phys. 76 (1), 18.Google Scholar
Endler, M. 1995 Nucl. Fusion 35, 1307.CrossRefGoogle Scholar
Ghanbari, M. R.et al. 2011a Phys. Scripta 83, 055501.CrossRefGoogle Scholar
Ghanbari, M. R., Ghoranneviss, M., Salar Elahi, A. and Mohammadi, S. 2011b Radiat. Eff. Defects Solids 166 (10), 789794.CrossRefGoogle Scholar
Ghanbari, M. R.et al. 2012 Phys. Scripta 85 (5), 055502.CrossRefGoogle Scholar
Ghoranneviss, M.et al. 2010a Phys. Scripta 82 (3), 035502.CrossRefGoogle Scholar
Ghoranneviss, M.et al. 2010b J. Fusion Energy 29 (5), 467470.CrossRefGoogle Scholar
Goodarzi, Z., Ghoranneviss, M. and Salar Elahi, A. March 2012 Accepted for the publication in J. Fusion Energy (in press), doi:10.1007/s10894-012-9526-4.CrossRefGoogle Scholar
Rad, A. R., Emami, M., Ghoranneviss, M. and Salar Elahi, A. 2010 J. Fusion Energy 29 (1), 7375.Google Scholar
Rad, A. R., Ghoranneviss, M., Emami, M. and Salar Elahi, A. 2009 J. Fusion Energy 28 (4), 420426.Google Scholar
Ritz, Ch. P.et al. 1998 Rev. Sci. Instrum. 59, 17391744.CrossRefGoogle Scholar
Salar Elahi, A. 2011 J. Fusion Energy 30 (6), 477480.CrossRefGoogle Scholar
Salar Elahi, A.et al. 2009 J. Fusion Energy 28 (4), 346349; J. Fusion Energy 28(4), 416–419; J. Fusion Energy 28(4), 408–411; J. Fusion Energy 28(4), 412–415; J. Fusion Energy 28(4), 394–397; J. Fusion Energy 28(4), 404–407; J. Fusion Energy 28(4), 390–393; J. Fusion Energy 28(4), 385–389; Phys. Scripta 80, 045501; Phys. Scripta 80, 055502.CrossRefGoogle Scholar
Salar Elahi, A.et al. 2010 IEEE Trans. Plasma Sci. 38 (2), 181185; IEEE Trans. Plasma Sci. 38 (9), 3163–3167; Fusion Eng. Des. 85, 724–727; Phys. Scripta 81(5), 055501; Phys. Scripta 82, 025502; J. Fusion Energy 29(1), 1–4; J. Fusion Energy 29(1), 22–25; J. Fusion Energy 29(1), 29–31; J. Fusion Energy 29(1), 26–28; J. Fusion Energy 29(1), 32–35; J. Fusion Energy 29(1), 36–40; J. Fusion Energy 29(1), 62–64; J. Fusion Energy 29(1), 76–82; J. Fusion Energy 29(1), 83–87; J. Fusion Energy 29(1), 88–93; J. Fusion Energy 29(3), 209–214; J. Fusion Energy 29(3), 232–236; J. Fusion Energy 29(3), 251–255; J. Fusion Energy 29(3), 279–284; J. Fusion Energy 29(5), 461–465; Brazilian J. Physics 40(3), 323–326.CrossRefGoogle Scholar
Salar Elahi, A.et al. 2011a J. Fusion Energy 30 (2), 116120.CrossRefGoogle Scholar
Salar Elahi, A.et al. 2011b Fusion Eng. Des. 86, 442445.CrossRefGoogle Scholar
Salar Elahi, A.et al. 2011c J. Nucl. Part. Phys. 1 (1), 1015, doi:10.5923/j.jnpp.20110101.03.CrossRefGoogle Scholar
Salar Elahi, A.et al. 2012a IEEE Trans. Plasma Sci. 40, 892897.CrossRefGoogle Scholar
Salar Elahi, A.et al. 2012b J. Fusion Energy 31 (2), 191194.CrossRefGoogle Scholar
Salar Elahi, A.et al. 2012c J. Nucl. Part. Phys. 2 (2), 15, doi:10.5923/j.jnpp.20120202.01.CrossRefGoogle Scholar
Salar Elahi, A.et al. 2012d J. Nucl. Part. Phys. 2 (2), 2225, doi:10.5923/j.jnpp.20120202.05.Google Scholar
Salar Elahi, A.et al. 2012e J. Nucl. Part. Phys. 2 (5), 112118, doi:10.5923/j.jnpp.20120205.02.CrossRefGoogle Scholar
Salar Elahi, A.et al. 2012f J. Nucl. Part. Phys. 2 (6), 142146, doi:10.5923/j.jnpp.20120206.02.CrossRefGoogle Scholar
Salar Elahi, A.et al. 2012g Radiat. Eff. Defects Solids (in press), doi:10.1080/10420150.2011.650171.Google Scholar
Salar Elahi, A.et al. 2012h Radiat. Eff. Defects Solids (in press), doi:10.1080/10420150.2012.706609.Google Scholar
Salar Elahi, A.et al. 2012i Radiat. Eff. Defects Solids (in press), doi:10.1080/10420150.2012.706607.Google Scholar
Salar Elahi, A.et al. 2013a IEEE Trans. Plasma Science (in press), doi:10.1109/TPS.2012.2235186.Google Scholar
Salar Elahi, A.et al. 2013b Fusion Eng. Des. (in press), doi:10.1016/j.fusengdes.2012.12.001.Google Scholar
Silva, C.et al. 2002 17th IAEA Fusion Energy Conference, EX/P1-10 Lyon, France.Google Scholar
Spolaore, M.et al., 2005 Czech. J. Phys. 55 (12), 16151621.CrossRefGoogle Scholar
Viatcheslav, B.et al., 2002 J. Plasma Fusion Res. Ser. 5, 418423.Google Scholar
Wang, E. Y.et al., 1995 Nucl. Fusion 35, 467.CrossRefGoogle Scholar