Published online by Cambridge University Press: 01 March 2013
In this paper, turbulent transport in the edge plasma of the IR-T1 tokamak (r/a = 0.9) in the presence of a resonant helical magnetic field (RHF) and a biased limiter has been investigated and analyzed. The time evolution of potential fluctuation, and electric field and turbulent transport have been measured by using two arrays of the Langmuir probes in both the radial and poloidal directions. The experiments have been done in different regimes such as limiter biasing and RHF, and both of them. The analyses have been done by the fast Fourier transport method and their spectral features are obtained with the help of the standard autocorrelation technique. The results show that radial turbulent transport decreases about 60% after positive biasing application, while it increases about 40% after negative biasing. The effect of positive biasing on poloidal turbulent transport displays an increase of about 55%, while the negative bias voltage decreases the poloidal turbulent transport about 30%. Consequently, confinement is improved and plasma density rises significantly due to the applied positive biasing in IR-T1. However, the results are reversed when negative biasing is applied. Also, in this work, the results of the applied RHF (L = 3) are compared with biasing results and analyzed.