Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T21:59:17.230Z Has data issue: false hasContentIssue false

An introduction to the physics of the Coulomb logarithm, with emphasis on quantum-mechanical effects

Published online by Cambridge University Press:  10 January 2019

J. A. Krommes*
Affiliation:
Princeton Plasma Physics Laboratory, Princeton University, MS 28, P.O. Box 451, Princeton, NJ 08543–0451, USA
*
Email address for correspondence: krommes@princeton.edu

Abstract

An introduction to the physical interpretation of the Coulomb logarithm is given with particular emphasis on the quantum-mechanical corrections that are required at high temperatures. Excerpts from the literature are used to emphasize the historical understanding of the topic, which emerged more than a half-century ago. Several misinterpretations are noted. Quantum-mechanical effects are related to diffraction by scales of the order of the Debye screening length; they are not due to quantum uncertainty related to the much smaller distance of closest approach.

Type
Tutorial
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balescu, R. 1988 Transport Processes in Plasmas, vol. 1. Elsevier.Google Scholar
Bethe, H. A. 1933 Quantenmechanik der Ein- und Zwei-Electronenprobleme. Handbuch d. Phys. 24 (1), 273560.Google Scholar
Braginskii, S. I. 1965 Transport processes in a plasma. In Reviews of Plasma Physics, Vol. 1 (ed. Leontovich, M. N.), pp. 205311. Consultants Bureau.Google Scholar
Cohen, R. S., Spitzer, L. Jr & Routly, P. McR. 1950 The electrical conductivity of an ionized gas. Phys. Rev. 80, 230238.Google Scholar
Davydov, A. S. 1976 Quantum Mechanics. Pergamon (translated, edited, and with additions by D. ter Haar).Google Scholar
Frieman, E. A. & Book, D. L. 1963 Convergent classical kinetic equation for a plasma. Phys. Fluids 6, 17001706.Google Scholar
Helander, P. & Sigmar, D. J. 2002 Collisional Transport in Magnetized Plasmas. Cambridge University Press.Google Scholar
Huba, J. D.2016 NRL Plasma Formulary. Naval Research Laboratory, https://www.nrl.navy.mil/ppd/content/nrl-plasma-formulary.Google Scholar
Ichimaru, S. 1973 Basic Principles of Plasma Physics – A Statistical Approach. Benjamin.Google Scholar
Krall, N. A. & Trivelpiece, A. W. 1973 Principles of Plasma Physics. McGraw-Hill.Google Scholar
Krommes, J. A. 1976 Two new proofs of the test particle superposition principle of plasma kinetic theory. Phys. Fluids 19, 649655.Google Scholar
Krommes, J. A. 2018a Projection-operator methods for classical transport in magnetized plasmas. Part 1. Linear response, the Braginskii equations and fluctuating hydrodynamics. J. Plasma Phys. 84, 925840401.Google Scholar
Krommes, J. A. 2018b Projection-operator methods for classical transport in magnetized plasmas. Part 2. Nonlinear response and the Burnett equations. J. Plasma Phys. 84, 905840601.Google Scholar
Kulsrud, R. M. 2005 Plasma Physics for Astrophysics. Princeton University Press.Google Scholar
Landau, L. D. 1936 Kinetic equation in the case of the Coulomb interaction. Phys. Z. Sowjetunion 10, 154 (JETP 7, 203–9 (1937)).Google Scholar
Landau, L. D. & Lifshitz, E. N. 1981 Physical Kinetics. Pergamon.Google Scholar
Lenard, A. 1960 On Bogoliubov’s kinetic equation for a spatially homogeneous plasma. Ann. Phys. 10, 390400.Google Scholar
Marshak, R. E. 1941 The radiative and conductive opacities under white dwarf conditions. Ann. N.Y. Acad. Sci. 41, 4960.Google Scholar
Montgomery, D. C. & Tidman, D. A. 1964 Plasma Kinetic Theory. McGraw-Hill.Google Scholar
Mulser, P., Alber, G. & Murakami, M. 2014 Revision of the Coulomb logarithm in the ideal plasma. Phys. Plasmas 21, 042103.Google Scholar
Rosenbluth, M. N., Macdonald, W. & Judd, D. L. 1957 Fokker–Planck equation for an inverse-square force. Phys. Rev. 107, 16.Google Scholar
Rostoker, N. 1964a Superposition of dressed test particles. Phys. Fluids 7, 479490.Google Scholar
Rostoker, N. 1964b Test particle method in kinetic theory of a plasma. Phys. Fluids 7, 491498.Google Scholar
Sivukhin, D. V. 1966 Coulomb collisions in a fully ionized plasma. In Reviews of Plasma Physics, vol. 4, pp. 93241. Consultants Bureau.Google Scholar
Spitzer, L. Jr 1962 Physics of Fully Ionized Gases. Interscience.Google Scholar
Wesson, J. 2011 Tokamaks, 4th edn. Oxford University Press.Google Scholar