Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-28T23:02:50.819Z Has data issue: false hasContentIssue false

Amplification of magnetic fields by polaritonic flows in quantum pair plasmas

Published online by Cambridge University Press:  01 June 2007

N. SHUKLA
Affiliation:
Institut für Theoretische Physik IV and Centre for Plasma Science and Astrophysics, Fakultät für Physik und Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany (ns@tp4.rub.de) Department of Physics, K. N. Government Postgraduate College, Gyanpur, Bhadohi 221304, U. P., India Department of Physics, Umeå University, SE-90187 Umeå, Sweden GoLP/Centro de Física de Plasmas, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa, Portugal
P. K. SHUKLA
Affiliation:
Institut für Theoretische Physik IV and Centre for Plasma Science and Astrophysics, Fakultät für Physik und Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany (ns@tp4.rub.de) Department of Physics, Umeå University, SE-90187 Umeå, Sweden GoLP/Centro de Física de Plasmas, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa, Portugal Max-Planck Institut für extraterrestrische Physik, D-45741 Garching, Germany CCLRC Centre for Fundamental Physics, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 OQX, UK SUPA Department of Physics, University of Strathclyde, Glasgow G4 ONG, UK School of Physics, University of KwaZulu-Durban, 4000 Durban, South Africa (gem@mpg.mpe.de)
G. E. MORFILL
Affiliation:
Max-Planck Institut für extraterrestrische Physik, D-45741 Garching, Germany

Abstract

It is shown that equilibrium polaritonic flows can amplify magnetic fields in an ultra-cold quantum electron–positron/hole (polaritons) plasma. For this purpose, a linear dispersion relation has been derived by using the quantum generalized hydrodynamic equations for the polaritons, the Maxwell equation, and Faraday's law. The dispersion relation admits purely growing instabilities, the growth rates of which are proportional to the equilibrium streaming speeds of the polaritons. Possible applications of our work to the spontaneous excitation of magnetic fields and the associated cross-field transport of the polaritons in micromechanical systems, compact dense astrophysical objects (e.g. neutron stars), and intense laser–plasma interaction experiments are mentioned.

Type
Letter to the Editor
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Kremp, D., Bornath, Th., Bonitz, M. and Schlanges, M. 1999 Phys. Rev. E 60, 4725.Google Scholar
[2]Jung, Y. F. 2001 Phys. Plasmas 8, 3842.CrossRefGoogle Scholar
Opher, M., Silva, L. O., Danger, D. E., Decyk, V. K. and Dawson, J. M. 2001 Phys. Plasmas 8, 2454.CrossRefGoogle Scholar
[3]Marklund, M. and Shukla, P. K. 2006 Rev. Mod. Phys. 78, 591.CrossRefGoogle Scholar
[4]Salmin, Y. I., Hu, S. X., Hatsagortsyan, K. Z. and Keitel, C. H. 2006 Phys. Rep. 427, 41.CrossRefGoogle Scholar
[5]Becker, K., Koutsospyros, A., Yin, S. M., Christodoulatos, C., Abramzon, N., Joaquin, J. C. and Brelles-Mariño, G. 2005 Plasma Phys. Control. Fusion 47, B513.CrossRefGoogle Scholar
Becker, K. H., Schoenbach, K. H. and Eden, J. E. 2006 J. Phys. D: Appl. Phys. 39, R55.CrossRefGoogle Scholar
[6]Shpatakovskaya, G. 2006 J. Exp. Theor. Phys. 102, 466.CrossRefGoogle Scholar
van Dam, J. A., Nazarov, Y. V., Bakkers, E. P. A. M., de Franceshi, S. and Kouwenhoven, L. P. 2006 Nature 442, 667.CrossRefGoogle Scholar
[7]Ang, L. K., Koh, W. S., Lau, Y. Y. and Kwan, T. J. T. 2006 Phys. Plasmas 13, 056701.CrossRefGoogle Scholar
[8]Barnes, W. L., Dereux, A. and Ebbesen, T. W. 2003 Nature 424, 824.CrossRefGoogle Scholar
[9]Killian, T. C. 2006 Nature 441, 298.CrossRefGoogle Scholar
[10]Markovich, P. A., Ringhofer, C. A. and Schmeister, C. 1990 Semiconductor Equations. Berlin: Springer.CrossRefGoogle Scholar
[11]Pines, D. 1961 J. Nucl. Energy: Part C: Plasma Phys. 2, 5.CrossRefGoogle Scholar
[12]Gardner, C. L. and Ringhofer, C. 1996 Phys. Rev. E 53, 157.Google Scholar
[13]Haas, F., Manfredi, G. and Feix, M. 2000 Phys. Rev. E 2763.Google Scholar
Manfredi, G. and Haas, F. 2001 Phys. Rev. B 64, 075316.CrossRefGoogle Scholar
[14]Anderson, D., Hall, B., Lisak, M. and Marklund, M. 2002 Phys. Rev. E 65, 046417.Google Scholar
[15]Haas, F., Garcia, L. G., Goedert, J. and Manfredi, G. 2003 Phys. Plasmas 10, 3858.CrossRefGoogle Scholar
Haas, F. 2005 Phys. Plasmas 12, 062117.CrossRefGoogle Scholar
Manfredi, G. 2005 Fields Inst. Commun. 46, 263.Google Scholar
[16]Garcia, L. G., Haas, F., de Oliveira, L. P. and Goedert, J. 2005 Phys. Plasmas 12, 012302.CrossRefGoogle Scholar
Marklund, M. 2005 Phys. Plasmas 12, 082110.CrossRefGoogle Scholar
[17]Shukla, P. K. 2006 Phys. Lett. A 352, 242.CrossRefGoogle Scholar
Stenflo, L., Shukla, P. K. and Marklund, M. 2006 Europhys. Lett. 74, 844.CrossRefGoogle Scholar
[18]Shukla, P. K. and Eliasson, B. 2006 Phys. Rev. Lett. 96, 245001.CrossRefGoogle Scholar
[19]Shukla, P. K. and Stenflo, L. 2006 Phys. Plasmas 13, 044505.CrossRefGoogle Scholar
[20]Marklund, M. and Brodin, G. 2007 Phys. Rev. Lett. 98, 025001.CrossRefGoogle Scholar