Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T19:38:08.206Z Has data issue: false hasContentIssue false

The absorbing properties of one-dimensional plasma photonic crystals

Published online by Cambridge University Press:  23 February 2016

Limei Qi*
Affiliation:
School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
*
Email address for correspondence: qilimei1204@163.com

Abstract

Using the transfer matrix method, absorbing properties of electromagnetic waves in one-dimensional plasma photonic crystals are proposed. Compared with the absorption of bulk plasma, more absorbing bands have been found in one-dimensional plasma photonic crystals, and the first absorbing band appears below the plasma frequency. These absorbing bands can be controlled by varying structure parameters, plasma parameters and the incident angle. Results show that the periodic number and collision frequency only control the absorbing magnitude. Plasma frequency, plasma thickness and incident angle affect both the absorbing magnitude and locations. Increasing the dielectric constant of the dielectric makes more absorbing bands appear. These features of one-dimensional plasma photonic crystals would have potential applications in tunable millimetre absorbers.

Type
Research Article
Copyright
© Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bronold, X. F., Heinisch, L. R., Marbach, J. & Fehske, H. 2011 Plasma walls beyond the perfect absorber approximation for electrons. IEEE Trans. Plasma Sci. 39, 644651.Google Scholar
Fan, W. & Dong, L. 2010 Tunable one-dimensional plasma photonic crystals in dielectric barrier discharge. Phys. Plasmas 17, 073506,1–6.Google Scholar
Ginzberg, L. V. 1970 The Propagation of Electromagnetic Waves in Plasma. Pergamon.Google Scholar
Guo, B. 2009 Photonic band gap structures of obliquely incident electromagnetic wave propagation in a one-dimension absorptive plasma photonic crystal. Phys. Plasmas 16, 043508,1–6.Google Scholar
Guo, B. 2012 Negative refraction in the terahertz region by using plasma metamaterials. J. Electromagn. Waves Appl. 26, 24452451.CrossRefGoogle Scholar
Hojo, H. & Mase, A. 2004 Dispersion relation of electromagnetic waves in one dimensional plasma photonic crystals. J. Plasma Fusion Res. 80, 8990.Google Scholar
Hojo, H. & Mase, A. 2009 Electromagnetic-wave transmittance characteristics in one-dimensional plasma photonic crystals. J. Plasma Fusion Res. Ser. 8, 477479.Google Scholar
Joannopoulos, D. J., Johnson, G. S., Winn, N. J. & Meade, D. R. 2008 Photonic Crystals-Molding the Flow of Light. Princeton University Press.Google Scholar
Kong, X., Liu, S., Zhang, H., Zhou, L. & Li, C. 2011 Band structure calculations for two-dimensional plasma photonic crystals in honeycomb lattice arrangement. J. Lightwave Technol. 29, 29472953.Google Scholar
Landy, I. N., Sajuyigbe, S., Mock, J. J., Smith, R. D. & Padilla, J. W. 2008 Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402,1–4.CrossRefGoogle ScholarPubMed
Liu, S., Hong, W. & Yuan, N. 2006 Finite-difference time-domain analysis of unmagnetised plasma photonic crystals. Intl J. Infrared Millimeter Waves 27, 403423.CrossRefGoogle Scholar
Liu, S., Zhong, S. & Liu, S. 2009 A study of properties of the photonic band gap of unmagnetized plasma photonic crystal. Plasma Sci. Technol. 11, 1417.Google Scholar
Qi, L. 2012 Photonic band structures of two-dimensional magnetized plasma photonic crystals. J. Appl. Phys. 111, 073301,1–8.Google Scholar
Qi, L., Li, C., Fang, G. & Li, S. 2015 The absorbing properties of two-dimensional plasma photonic crystals. Plasma Sci. Technol. 17, 49.Google Scholar
Qi, L. & Yang, Z. 2009 Modified plane wave method analysis of dielectric plasma photonic crystal. Prog. Electromagn. Res. 91, 319332.Google Scholar
Qi, L., Yang, Z. & Fu, T. 2010a Defect modes in one-dimensional magnetized plasma photonic crystals with a dielectric defect layer. Phys. Plasmas 19, 012509,1–6.Google Scholar
Qi, L., Yang, Z., Lan, F., Gao, X. & Li, D. 2010b Dispersion characteristics of two-dimensional unmagnetized dielectric plasma photonic crystal. Chin. Phys. B 19, 034210,1–6.Google Scholar
Qi, L., Yang, Z., Lan, F., Gao, X. & Shi, Z. 2010c Properties of obliquely incident electromagnetic wave in 1D magnetized plasma photonic crystals. Phys. Plasmas 17, 042501,1–8.Google Scholar
Qi, L. & Zhang, X. 2011a Band gap characteristics of plasma with periodically varying external magnetic field. Solid State Commun. 151, 18381841.Google Scholar
Qi, L. & Zhang, X. 2011b Photonic band gaps of one-dimensional ternary plasma photonic crystals with periodic and periodic-varying structures. J. Electromagn. Waves Appl. 25, 539552.Google Scholar
Sakai, O., Naito, T., Shimomura, T. & Tachibana, K. 2010 Microplasma array with metamaterial effects. Thin Solid Films 518, 057102,1–9.Google Scholar
Sakai, O., Sakaguchi, T., Naito, T., Lee, S. D. & Tachibana, K. 2007a Characteristics of metamaterials composed of microplasma arrays. Plasma Phys. Control. Fusion 49, B453B463.Google Scholar
Sakai, O., Sakaguchi, T. & Tachibana, K. 2005 Verification of a plasma photonic crystal microplasmas. Appl. Phys. Lett. 87, 241505,1–3.Google Scholar
Sakai, O., Sakaguchi, T. & Tachibana, K. 2007b Photonic bands in two-dimensional microplasma arrays. I. Theoretical derivation of band structures of electromagnetic waves. J. Appl. Phys. 101, 073304,1–9.Google Scholar
Sakai, O., Sakaguchi, T. & Tachibana, K. 2007c Plasma photonic crystals in two-dimensional arrays of microplasmas. Contrib. Plasma Phys. 47, 96102.Google Scholar
Sakai, O. & Tachibana, K. 2007 Properties of electromagnetic wave propagation emerging in 2-D periodic plasma structures. IEEE Trans. Plasma Sci. 35, 12671273.Google Scholar
Shen, X., Yang, Y., Zang, Y., Gu, J., Han, J. & Cui, T. 2012 Triple-band terahertz metamaterial absorber. Appl. Phys. Lett. 101, 154102,1–4.Google Scholar
Zhang, H., Liu, S. & Kong, X. 2013 Dispersion properties of three-dimensional plasma photonic crystals. J. Lightwave Technol. 31, 16941702.Google Scholar
Zhang, H., Ma, L. & Liu, S. 2009 Study of periodic band gap structure of the magnetized plasma photonic crystals. Optoelectron. Lett. 5, 112116.Google Scholar