Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T03:35:41.234Z Has data issue: false hasContentIssue false

Theoretical cross-spectrum of the microfield measured by two small dipoles in a warm isotropic plasma

Published online by Cambridge University Press:  13 March 2009

R. Pottelette
Affiliation:
Centre de Recherche en Physique do l'Environnement 45045 Orleans-la-Source, France
C. Chauliaguet
Affiliation:
Centre de Recherche en Physique do l'Environnement 45045 Orleans-la-Source, France
L. R. O. Storey
Affiliation:
Centre de Recherche en Physique do l'Environnement 45045 Orleans-la-Source, France

Abstract

We suggest that the electron density and temperature of a plasma could be determined by immersing two small dipole antennae in it, and by measuring, as a function of frequency, the cross-spectrum of the random signals that they receive. When the plasma is in thermal equilibrium, this spectrum is related simply, by Nyquist's theorem, to the real part of the mutual impedance of the two antennae. We have studied the case where, in addition, the plasma is collisionless and no magnetic field is present. The spectrum has a main resonance peak slightly above the plasma frequency, while for still higher frequencies it exhibits oscillations, the amplitudes of which decrease as one moves away from the plasma frequency. The main resonance peak becomes sharper, but smaller, as the distance between the antennae becomes large compared with the Debye length.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bekefi, G. 1966 Radiation Processes in Plasma. New York: Wiley.Google Scholar
Birmingham, T., Dawson, J. & Oberman, C. 1964 Phys. Fluids, 8, 297.CrossRefGoogle Scholar
Callen, H. B. & Welton, T. A. 1951 Phys. Rev. 83, 34.CrossRefGoogle Scholar
Chauliaguet, C. 1970 3rd Cycle Thesis, Faculté des Sciences de Paris.Google Scholar
Eykhoff, P. 1974 System Identification. New York: Wiley.Google Scholar
Fiala, V. & Storey, L. R. O. 1970 Plasma Waves in Space and in the Laboratory (ed. Thomas, J. O. & Landmark, B. J.), vol. 2, p. 411. Edinburgh University Press.Google Scholar
Fejer, J. A. & Kan, J. R. 1969 Radio Sci. 4, 721.CrossRefGoogle Scholar
Fried, B. D. & Conte, S. D. 1961 The Plasma Dispersion Function. New York: Academic Press.Google Scholar
Geissler, K. H., Greenwald, R. G. & Calvert, W. 1972 Phys. Fluids, 15, 95.CrossRefGoogle Scholar
Harker, K. J. & Ilić, D. B. 1974 Rev. Sci. Instrum. 45, 1315.CrossRefGoogle Scholar
Harker, K. J., Ilić, D. B. & Crawfoed, F. W. 1975 SU-IPR Report No. 610, Stanford University.Google Scholar
Hooper, E. B. 1971 J. Plasma Phys. 13, 1.CrossRefGoogle Scholar
James, H. G., Hagg, E. L. & Strange, D. L. P. 1974 AGARD Conference Proceedings No. 138, Technical Editing and Reproduction Ltd, London, 24–1 to 24–7.Google Scholar
Kuehl, H. H. 1966 Radio Sci. 1, 971.CrossRefGoogle Scholar
Kuehl, H. H. 1967 Radio Sci. 2, 73.CrossRefGoogle Scholar
Milis, G. S., McLane, C. K. & Tsukishima, T. 1970 Phys. Fluids, 13, 2135.CrossRefGoogle Scholar
Montgomery, D. C. & Tidman, D. A. 1969 Plasma Kinetic Theory. New York: McGraw-Hill.Google Scholar
Pottelette, R., Rooy, B. & Fiala, V. 1975 J. Plasma Phys. 14, 209.CrossRefGoogle Scholar
Rostoker, N. 1961 Nual. Fusion, 1, 101.CrossRefGoogle Scholar
Storey, L. R. O. & Chauliaguet, C. 1971 C. r. hebd. Seanc. Acad. Sci. Paris, 272, 1496.Google Scholar