Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T09:00:39.277Z Has data issue: false hasContentIssue false

Electron energy and vibrational distribution functions of carbon monoxide in nanosecond atmospheric discharges and microsecond afterglows

Published online by Cambridge University Press:  18 December 2017

L. D. Pietanza*
Affiliation:
CNR Nanotec, P.Las.M.I Lab, via Amendola 122/D, 70126 Bari, Italy
G. Colonna
Affiliation:
CNR Nanotec, P.Las.M.I Lab, via Amendola 122/D, 70126 Bari, Italy
M. Capitelli
Affiliation:
CNR Nanotec, P.Las.M.I Lab, via Amendola 122/D, 70126 Bari, Italy
*
Email address for correspondence: luciadaniela.pietanza@cnr.it

Abstract

Nanopulse atmospheric carbon monoxide discharges and corresponding afterglows have been investigated in a wide range of applied reduced electric field (130 < E/N < 200 Td) and different pulse durations (2–50 ns). The results have been obtained by solving an appropriate Boltzmann equation for the electron energy distribution function (EEDF) coupled to the kinetics of vibrational and electronic excited states as well as to a simplified plasma chemistry for the different species formed during the activation of CO. The molar fraction of electronically excited states generated in the discharge is sufficient to create structures in the EEDF in the afterglow regime. On the other hand, only for long duration pulses (i.e. 50 ns), non-equilibrium vibrational distributions can be observed especially in the afterglow. The trend of the results for the case study E/N = 200 Td, $\unicode[STIX]{x1D70F}_{\text{pulse}}=2$  ns is qualitatively and quantitatively similar to the corresponding case for CO2 implying that the activation of CO2 by cold plasmas should take into account the kinetics of formed CO with the same accuracy as the CO2 itself.

Type
Research Article
Copyright
© Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aliat, A., Chikhaoui, A. & Kustova, E. V. 2003 Non equilibrium kinetics of a radiative CO flow behind a shock wave. Phys. Rev. E 68, 056306.Google Scholar
Aliat, A., Chikhaoui, A. & Kustova, E. V. 2005 State to state reaction rates in gases with vibration-electronic-dissociation coupling: the influence on a radiative shock heated CO flow. Chem. Phys. 314, 3747.Google Scholar
Barreto, P. R., De O. Euclides, H., Albernaz, A. F., Aquilanti, V., Capitelli, M., Grossi, G., Lombardi, A., Macheret, S. & Palazzetti, F. 2017 Gas phase Boudouard reactions involving singlet–singlet and singlet triplet CO vibrationally excited states: implications for the non-equilibrium vibrational kinetics of CO/CO2 plasmas. Eur. Phys. J D 71, 259.Google Scholar
Belov, I., Vanneste, J., Aghaee, M., Paulussen, S. & Bogaerts, A. 2017 Synthesis of micro- and nanomaterials in CO2 and CO dielectric barrier discharges. Plasma Process. Polym. 14 (3), 1600065.CrossRefGoogle Scholar
Bogaerts, A., Wang, W., Berthelot, A. & Guerra, V. 2016 Modeling plasma-based CO2 conversion: crucial role of the dissociation cross section. Plasma Sources Sci. Technol. 25, 055016.Google Scholar
Cacciatore, M., Capitelli, M., De Benedictis, S., Dilonardo, M. & Gorse, C. 1986 Vibrational kinetics, dissociation and ionization of diatomic molecules under non equilibrium conditions. Topics Curr. Phys. 39, 546.Google Scholar
Capitelli, M., Celiberto, R., Colonna, G., Esposito, F., Gorse, C., Hassouni, K., Laricchiuta, A. & Longo, S. 2016 Fundamental Aspects of Plasma Chemical Physics, Kinetics, Springer Series on Atomic, Optical and Plasma Physics. Springer.Google Scholar
Capitelli, M., Colonna, G., D’Ammando, G., Hassouni, K., Laricchiuta, A. & Pietanza, L. D. 2017b Coupling of plasma chemistry, vibrational kinetics, collisional-radiative models and electron energy distribution function under non-equilibrium conditions. Plasma Process. Polym. 14, 1600109.Google Scholar
Capitelli, M., Colonna, G., D’Ammando, G. & Pietanza, L. D. 2017a Self-consistent time dependent vibrational and free electron kinetics for CO2 dissociation and ionization in cold plasmas. Plasma Sources Sci. Technol. 26, 055009.Google Scholar
Capitelli, M., Colonna, G. & Esposito, F. 2004 On the coupling of vibrational relaxation with the dissociation–recombination kinetics: from dynamics to aerospace applications. J. Phys. Chem. A 108, 89308934.CrossRefGoogle Scholar
Capitelli, M., Dilonardo, M. & Molinari, E. 1977 A theoretical calculation of dissociation rates of molecular hydrogen in electric discharges. Chem. Phys. 20, 417429.Google Scholar
Capitelli, M., Ferreira, C. M., Gordiets, B. F. & Osipov, A. I. 2000 Plasma Kinetics in Atmospheric Gases, Springer Series on Atomic, Optical, and Plasma Physics. Springer.CrossRefGoogle Scholar
Colonna, G., Armenise, I., Bruno, D. & Capitelli, M. 2006 Reduction of state-to-state kinetics to macroscopic models in hypersonic flows. J. Thermophys. Heat Transfer 20, 477486.Google Scholar
Colonna, G. & Capitelli, M. 2001 The influence of atomic and molecular metastable states in high-enthalpy nozzle expansion nitrogen flows. J. Phys. D: Appl. Phys. 34, 18121818.CrossRefGoogle Scholar
Colonna, G., D’Ammando, G. & Pietanza, L. D. 2017a The role of molecular vibration in nanosecond repetitively pulsed discharges and in DBDs in hydrogen plasmas. Plasma Sources Sci. Technol. 25 (5), 054001.Google Scholar
Colonna, G., Laporta, V., Celiberto, R., Capitelli, M. & Tennison, J. 2015 Non-equilibrium vibrational and electron energy distributions functions in atmospheric nitrogen ns pulsed discharges and ms post-discharges: the role of electron molecule vibrational excitation scaling-laws. Plasma Sources Sci. Technol. 24, 035004.CrossRefGoogle Scholar
Colonna, G., Pietanza, L. D., D’Ammando, G., Celiberto, R., Capitelli, M. & Laricchiuta, A. 2017b Vibrational kinetics of electronically excited states in H2 discharges. Eur. Phys. J D 71, 279.CrossRefGoogle Scholar
Colonna, G., Tuttafesta, M., Capitelli, M. & Giordano, D. 1999 Non-Arrhenius NO formation rate in one dimensional nozzle air flow. J. Thermophys. Heat Transfer 13, 372375.Google Scholar
Cosby, P. C. 1993 Electron-impact dissociation of carbon monoxide. J. Chem. Phys. 98, 7804.Google Scholar
Essenhigh, K. A., Utkin, Y. G., Bernard, C., Adamovich, I. V. & Rich, J. W. 2006 Gas-phase Boudouard disproportionation reaction between highly vibrationally excited CO molecules. Chem. Phys. 330, 506514.Google Scholar
Fridman, A. 2008 Plasma Chemistry. Cambridge University Press.Google Scholar
Gorse, C., Cacciatore, M. & Capitelli, M. 1984a Kinetic processes in non-equilibrium carbon monoxide discharges. I Vibrational kinetics and dissociation rates. Chem. Phys. 85, 165176.Google Scholar
Gorse, C. & Capitelli, M. 1984b Kinetic processes in non-equilibrium carbon monoxide discharges. II Self-consistent electron energy distribution functions. Chem. Phys. 85, 177187.CrossRefGoogle Scholar
Gorse, C., Paniccia, F., Bretagne, J. & Capitelli, M. 1986 Electron energy distribution functions in Carbon Monoxide discharge and post-discharge conditions: the role of superelastic electronic collisions from $\text{CO}(\text{A}^{3}\unicode[STIX]{x1D6F1})$ state. J. Appl. Phys. 59, 731735.Google Scholar
Itikawa, Y. 2015 Cross sections for electron collisions with carbon monoxide. J. Phys. Chem. Ref. Data 44, 013105; Itikawa database, www.lxcat.net.Google Scholar
Kosareva, A. A. & Nagnibeda, E. A. 2017 Vibrational-chemical coupling in mixtures CO2/CO/O and CO2/CO/O2/O/C. J. Phys.: Conf. Ser. 815, 012027.Google Scholar
Kozak, T. & Bogaerts, A. 2014 Splitting of CO2 by vibrational excitation in non-equilibrium plasmas: a reaction kinetics model. Plasma Sources Sci. Technol. 23, 045004.Google Scholar
Kozak, T. & Bogaerts, A. 2015 Evaluation of the energy efficiency of CO2 conversion in microwave discharges using a reaction kinetics model. Plasma Sources Sci. Technol. 24, 015024.Google Scholar
Laher, R. R. & Gilmor, F. R. 2016 Updated excitation and ionization cross sections for electron impact on atomic oxygen. J. Phys. Chem. Ref. Data 19, 277.Google Scholar
Laporta, V., Cassidy, C. M., Tennyson, J. & Celiberto, R. 2012 Electron-impact resonant vibration excitation cross sections and rate coefficients for carbon monoxide. Plasma Sources Sci. Technol. 21, 045005.Google Scholar
Laporta, V., Tennyson, J. & Celiberto, R. 2016 Carbon monoxide dissociative attachment and resonant dissociation by electron-impact. Plasma Sources Sci. Technol. 25, 01LT04.Google Scholar
Levko, D., Paschulli, M. & Raja, M. L. 2017 Particle in cell modeling of shear branching in CO2 gas. J. Phys. D: Appl. Phys. 50, 354004.Google Scholar
Macdonald, R. L., Munafo’, A., Johnston, C. O. & Panesi, M. 2016 Nonequilibrium radiation and dissociation of CO molecules in shock-heated flows. Phys. Rev. Fluids 1, 043401.Google Scholar
Mezei, J. Zs., Backodissa-Kiminou, R. D., Tudorache, D. E., Morel, V., Chakrabarti, K., Motapon, O., Dulieu, O., Robert, J., Tchang-Brillet, W.-U., Bultel, A. et al. 2015 Dissociative recombination and vibrational excitation of CO+: model calculations and comparison with experiments. Plasma Sources Sci. Technol. 24, 035005.Google Scholar
Mishina, A. I. & Kustova, E. V. 2017 Spatially homogeneous relaxation of CO molecules with resonant VE transitions. Vestn. St. Peterburg Univ.: Math. 50, 188197.Google Scholar
Mori, S. & Suzuki, M. 2009 Characterization of carbon nanofibers synthesized by microwave plasma-enhanced CVD at low-temperature in a CO/Ar/O2 system. Diam. Relat. Mater. 18, 678.Google Scholar
Peeremboom, K., Khaj, M. & Degrez, G. 2017 Pooling through cooling: creating optimal vibrational non-equilibrium CO2 by supersonic expansion. J. Phys. D: Appl. Phys. 50, 195201.Google Scholar
Pietanza, L. D., Colonna, G. & Capitelli, M. 2017b Non-equilibrium plasma kinetics of reacting CO: an improved state to state approach. Plasma Sources Sci. Technol. 26, 125007.CrossRefGoogle Scholar
Pietanza, L. D., Colonna, G., D’Ammando, G. & Capitelli, M. 2017a Time-dependent coupling of electron energy distribution function, vibrational kinetics of the asymmetric mode of CO2 and dissociation, ionization and electronic excitation kinetics under discharge and post-discharge conditions. Plasma Phys. Control. Fusion 59, 014035.Google Scholar
Pietanza, L. D., Colonna, G., D’Ammando, G. & Capitelli, M. 2017c Time-dependent coupling of electron energy distribution function, vibrational kinetics of the asymmetric mode of CO2 and dissociation, ionization and electronic excitation kinetics under discharge and post-discharge conditions. Plasma Phys. Control. Fusion 59, 014035.Google Scholar
Pietanza, L. D., Colonna, G., D’Ammando, G., Laricchiuta, A. & Capitelli, M. 2015 Vibrational excitation and dissociation mechanisms of CO2 under non-equilibrium discharge and post-discharge conditions. Plasma Sources Sci. Technol. 24, 042002.CrossRefGoogle Scholar
Pitchford, L. C., Alves, L. A., Bartschat, K., Biagi, S. F., Bordage, M. C., Bray, I., Brion, C. E., Brunger, M. J., Campbell, L., Chachereau, A. et al. 2017 LXCat: an open-access, web-based platform for data needed for modeling low temperature plasmas. Plasma Process. Polym. 14, 1600098.CrossRefGoogle Scholar
Rockwood, S. D. 1973 Elastic and inelastic cross sections for electron-Hg scattering from Hg transport data. Phys. Rev. A 8, 23482358.CrossRefGoogle Scholar
Wang, Y., Zatsarinny, O. & Bartschat, K. 2013 B-spline R-matrix-with-pseudostates calculations for electron-impact excitation and ionization of carbon. Phys. Rev. A 87, 012704.Google Scholar