Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T06:50:51.971Z Has data issue: false hasContentIssue false

The effect of helium impurity addition on current sheath speed in argon-operated plasma focus using a tridimensional magnetic probe

Published online by Cambridge University Press:  14 June 2013

N. PANAHI
Affiliation:
Department of Physics, Islamic Azad University, Bandar Abbas Branch, P.O. Box 79159-1311, Bandar Abbas, Iran
M. A. MOHAMMADI
Affiliation:
Department of Atomic and Molecular Physics, Faculty of Physics, University of Tabriz, Tabriz, Iran (mohammadidorbash@yahoo.com) Research Center of Astrophysics and Applied Physics, University of Tabriz, Tabriz, Iran
S. HEDYEH
Affiliation:
Department of Atomic and Molecular Physics, Faculty of Physics, University of Tabriz, Tabriz, Iran (mohammadidorbash@yahoo.com)
R. S. RAWAT
Affiliation:
Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore

Abstract

Using the tridimensional magnetic probe, the current sheath velocity at 0.25 Torr is studied in Sahand, a Filippov-type plasma focus facility. The current sheath velocity in argon-filled plasma focus with different percentages of helium impurity at different operating voltages was studied. The highest average current sheath velocity of 12.26 ± 1.51 cm μs−1 at the top of the anode in the axial phase was achieved at 17 kV. Minimum average current sheath velocity is 5.24 ± 1.18 cm μs−1 at 12 kV with 80% argon + 20% helium as a working gas. The full width at half-maximum of peaks of the magnetic probe was found to be inversely related to the current sheath velocity, i.e. smaller at higher voltages for different impurity and decreased with increasing of impurity.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beg, F. N., Ross, I., Lorena, A., Worley, J. F., Danger, A. E. and Hanies, M. G. 2000 J. Appl. Phys. 88, 3225.CrossRefGoogle Scholar
Bhuyan, H., Mohanty, S. R., Neagy, N. K., Bujarbarua, S. and Rout, R. K. 2004 J. Appl. Phys. 95, 2975.CrossRefGoogle Scholar
Brunelli, B. and Leotta, G. 1982 Unconventional Approach to Fusion. New York: Plenum, 157 pp.CrossRefGoogle Scholar
Cloth, P. and Conrads, H. 1977 Nucl. Sci. Engg. 62, 591.CrossRefGoogle Scholar
Decker, G., Kies, W. and Pross, G. 1983 Phys. Fluids 26, 571.CrossRefGoogle Scholar
Filippov, N. V., Filippova, T. I. and Vinogradov, V. P. 1962 Nucl. Fusion Suppl. 2, 77.Google Scholar
Ghareshabani, E. and Mohammadi, M. A. 2012 J. Fusion Energy 31, 595.CrossRefGoogle Scholar
Gribkov, V. A., Srivastava, A., Keat, P. L. C., Kudryashov, V. and Lee, S. 2002 IEEE Trans. Plasma Sci. 30, 1331.CrossRefGoogle Scholar
Kato, Y. and Be, S. H. 1986 Appl. Phys. Lett. 48, 686.CrossRefGoogle Scholar
Kies, W., Decker, G., Berntien, U., Sidelnikov, Y. V., Glushkov, D. A., Koshelev, K. N., Simanovskii, D. M. and Babashev, S. V. 2000 Plasma Sources Sci. Technol. 9, 27.CrossRefGoogle Scholar
Koshelev, K. N., Krauz, V. I., Reshetniak, N. G., Salukvadze, R. G., Sidelnikov, Yu. V. and Khautiev, E. Yu. 1988 J. Phys. D: Appl. Phys. 21 (12), 1827.CrossRefGoogle Scholar
Kozlov, N. P., Aleksev, V. A., Protsov, Y. S. and Rubinov, A. B. 1974 JEPT Lett. 20, 331.Google Scholar
Krauz, V., Mitrofanov, K., Myalton, V. V., Grabovski, E. V., Koidan, V. S., Vinogradov, V. P., Vinogradova, Y. V. and Zukakishvili, G. G. 2010 IEEE Trans. Plasma Sci. 38, 92.CrossRefGoogle Scholar
Krauz, V., Mitrofanov, K., Scholz, M., Paduch, M., Karpinski, L., Zielinska, E. and Kubes, P. 2012 Plasma Phys. Control. Fusion 54, 025010.CrossRefGoogle Scholar
Kwek, K. H., Tou, T. Y. and Lee, S. 1990 IEEE Trans. Plasma Sci. 18, 826.CrossRefGoogle Scholar
Lee, S., Lee, P., Zhang, G., Serban, A., Liu, M., Liu, X., Feng, X., Springham, S. V., Selvam, C. S., Kudryashov, V. and Wong, T. K. S. 2003 Sing. J. Phys. 173, 276.Google Scholar
Mather, J. W. 1964 Phys. Fluids 7, 5.CrossRefGoogle Scholar
Mather, J. W. 1965 Phys. Fluids 8, 366.CrossRefGoogle Scholar
Mohammadi, M. A., Sobhanian, S., Ghomeshi, M., Ghareshabani, E., Moslehi-fard, M., Lee, S. and Rawat, R. S. 2009 J. Fusion Energy 28, 371.CrossRefGoogle Scholar
Mohammadi, M. A., Sobhanian, S. and Rawat, R. S. 2011 Phys. Lett. A 375, 3002.CrossRefGoogle Scholar
Mohammadi, M. A., Verma, R., Sobhanian, S., Wong, C. S., Lee, S., Springham, S. V., Tan, T. L., Lee, P. and Rawat, R. S. 2007 Plasma Sour. Sci. Tech. 16, 785.CrossRefGoogle Scholar
Patran, A., Stoenescu, D., Rawat, R. S., Springham, S. V., Tan, T. L., Tan, T. L., Rafique, M. S., Lee, P. and Lee, S. 2006 J. Fusion Energy 25, 57.CrossRefGoogle Scholar
Rawat, R. S., Arun, P., Vedeshwer, A. G., Lam, Y. L., Liu, M. H., Lee, P. and Lee, S. 2000 Mater. Res. Bull. 35, 477.CrossRefGoogle Scholar
Rawat, R. S., Arun, P., Vedeshwer, A. G., Lee, P. and Lee, S. 2004 J. Appl. Phys. 95, 7725.CrossRefGoogle Scholar
Sadowski, M., Zebrowski, J., Rydygier, E. and Kucinski, J. 1988 Plasma Phys. Contr. Fusion 30, 763.CrossRefGoogle Scholar
Schmidt, H., Sadowski, M., Jakubowski, L., Sadowska, E. S. and Stanislawski, J. 1994 Plasma Phys. Control. Fusion 36, 13.CrossRefGoogle Scholar
Shafiq, M., Hussain, S., Waheed, A. and Zakaullah, M. 2003 Plasma Sour. Sci. Tech. 12, 199.CrossRefGoogle Scholar
Soh, L. Y., Lee, P., Shuyan, X., Lee, S. and Rawat, R. S. 2004 IEEE Trans. Plasma Sci. 32, 448.CrossRefGoogle Scholar
Soto, L., Silva, P., Moreno, J., Zambra, M., Kies, W., Mayer, R. E., Clausse, A., Altamirano, L., Pavez, C. and Huerta, L. 2008 J. Phys. D: Appl. Phys. 41, 205215.CrossRefGoogle Scholar
Srivastava, M. P., Mohanty, S. R., Annapoorni, S. and Rawat, R. S. 1997 Phys. Lett. A 231, 434.Google Scholar
Valipour, M., Mohammadi, M. A., Sobhanian, S. and Rawat, R. S. 2012 J. Fusion Energy 31, 65.CrossRefGoogle Scholar
Verma, R., Lee, P., Lee, S., Springham, S. V., Tan, T. L., Krishnan, M. and Rawat, R. S. 2009 Appl. Phys. Lett. 93, 101501.CrossRefGoogle Scholar
Verma, R., Lee, P., Lee, S., Springham, S. V., Tan, T. L., Rawat, R. S. and Krishnan, M. 2008 Appl. Phys. Lett. 93, 101501.CrossRefGoogle Scholar
Vikherev, V. V. and Braginski, S. I. 1986 Rev. Plasma Phys. 10, 425.Google Scholar
Wong, D., Patran, A., Tan, T. L., Rawat, R. S. and Lee, P. 2004 IEEE Trans. Plasma Sci. 32, 2227.CrossRefGoogle Scholar
Zakaullah, M., Alamgir, K., Shafiq, M., Hassan, S. M., Sharif, M., Hussain, S. and Waheed, A. 2002a Plasma Sour. Sci. Tech. 11, 377.CrossRefGoogle Scholar
Zakaullah, M., Alamgir, A., Shafiq, M., Sharif, M. and Waheed, A. 2002b IEEE Trans. Plasma Sci. 30, 2089.CrossRefGoogle Scholar