Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T23:08:55.861Z Has data issue: false hasContentIssue false

An alternative neuronal method for non-analytic pseudo-potentials in a charge-varying dusty plasma with trapped dust grains

Published online by Cambridge University Press:  22 February 2013

L. AIT GOUGAM
Affiliation:
Theoretical Physics Laboratory, Faculty of Sciences-Physics, University of Bab-Ezzouar, U.S.T.H.B, B.P. 32, El-Alia, Algiers 16111, Algeria (mouloudtribeche@yahoo.fr)
M. TRIBECHE
Affiliation:
Theoretical Physics Laboratory, Faculty of Sciences-Physics, University of Bab-Ezzouar, U.S.T.H.B, B.P. 32, El-Alia, Algiers 16111, Algeria (mouloudtribeche@yahoo.fr) International Centre for Advanced Studies in Physical Sciences, Faculty of Physics and Astronomy, Ruhr-University Bochum, D-44780 Bochum, Germany
F. MEKIDECHE
Affiliation:
Theoretical Physics Laboratory, Faculty of Sciences-Physics, University of Bab-Ezzouar, U.S.T.H.B, B.P. 32, El-Alia, Algiers 16111, Algeria (mouloudtribeche@yahoo.fr)
P. K. SHUKLA
Affiliation:
International Centre for Advanced Studies in Physical Sciences, Faculty of Physics and Astronomy, Ruhr-University Bochum, D-44780 Bochum, Germany

Abstract

Solitary waves are investigated in a charge-varying dusty plasma involving dust trapping. A potentially useful neuronal method that may handle a wide variety of non-analytic pseudo-potentials is used. This method could be advantageously exploited in rendering a cumbersome pseudo-potential analytically more tractable. Making use of the approximate Sagdeev pseudo-potential, our results show the possibility of development of localized dust structures in a dusty plasma with variable charge trapped dust grains.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ait Gougam, L., Tribeche, M. and Mekideche-Chafa, F. 2008 Neural Netw. 21, 1311.CrossRefGoogle Scholar
Davidson, R. C. 1972 Methods in Nonlinear Plasma Theory. New York: Academic.Google Scholar
Dreyfus, G. 2005 Neural Networks: Methodology and Applications. Berlin: Springer.Google Scholar
Gardner, C. S., Green, J. M., Kruskal, M. D. and Miura, R. M. 1967 Phys. Rev. Lett. 19, 1095.CrossRefGoogle Scholar
Ghosh, S., Gupta, M. R., Chakrabarti, N. and Chaudhuri, M. 2011 Phys. Rev. E 83, 066406.Google Scholar
Hayes, B. 2005 Am. Sci. 93, 104.CrossRefGoogle Scholar
Hirota, R. 1971 Phys. Rev. Lett. 27, 1192.CrossRefGoogle Scholar
Ikezi, H. 1973 Phys. Fluids 16, 1668.CrossRefGoogle Scholar
Infeld, E. and Rowlands, G. 1990 Nonlinear Wave, Soliton and Chaos. Cambridge: Cambridge University Press.Google Scholar
Karpman, I. 1975 Nonlinear Waves in Dispersive Media. Oxford: Pergamon.Google Scholar
Lonngren, K. and Scott, A. (eds.) 1978 Solitons in Action. New York: Academic.Google Scholar
Malfliet, W. 1992 Am. J. Phys. 60, 650.CrossRefGoogle Scholar
Mannan, A. and Mamun, A. A. 2011 Phys. Rev. E 84, 026408.Google Scholar
Melandso, F. 1996 Phys. Plasmas 3, 3890.CrossRefGoogle Scholar
Merlino, R. L., Barkan, A., Thompson, C. and D'Angelo, N. 1998 Phys. Plasmas 5, 1607; Plasma Phys. Control. Fusion 39, 421 (1997).CrossRefGoogle Scholar
Petviashvili, V. and Pokhotelov, O. 1992 Solitary Waves in Plasmas and in the Atmosphere. Philadelphia, PA: Gordon and Breach.Google Scholar
Rao, N. N., Shukla, P. K. and Yu, M. Y. 1990 Planet. Space Sci. 38, 543.CrossRefGoogle Scholar
Sagdeev, R. Z. 1966 In: Reviews of Plasma Physics, Vol. 4 (ed. Leontovich, M. A.). New York: Consultants Bureau, p. 23.Google Scholar
Shotorban, B. 2011 Phys. Rev. E 83, 066403.Google Scholar
Shukla, P. K. and Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. Bristol: Institute of Physics).CrossRefGoogle Scholar
Shukla, P. K. and Silin, V. P. 1992 Phys. Scr. 45, 508.CrossRefGoogle Scholar
Steeb, W. H. and Euler, N. 1988 Nonlinear Evolution Equations and Painlevé Test. Singapore: World Scientific.CrossRefGoogle Scholar
Tran, M. Q. 1979 Phys. Scr. 20, 317.CrossRefGoogle Scholar
Tribeche, M., Hamdi, R. and Zerguini, T. H. 2000 Phys. Plasmas 7, 4013.CrossRefGoogle Scholar
Tribeche, M., Younsi, S., Amour, R. and Aoutou, K. 2009 Phys. Scr. 80, 035505.CrossRefGoogle Scholar
Verheest, F. 2000 Waves in Dusty Space Plasmas. Dordrecht: Kluwer.CrossRefGoogle Scholar
Watanabe, S. 1975 J. Plasma Phys. 14, 353.CrossRefGoogle Scholar
Wazwaz, A. M. 2007 Appl. Math. Comput. 187, 1131.Google Scholar
Whitham, G. B. 1974 Linear and Nonlinear Waves. New York: Wiley.Google Scholar