Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T03:13:03.304Z Has data issue: false hasContentIssue false

Wilsonidium pechoricum new species—a new dinoflagellate species with unusual asymmetry from the Paleocene/Eocene Transition

Published online by Cambridge University Press:  14 July 2015

Alina I. Iakovleva
Affiliation:
Department of Earth Sciences, Aarhus University, 8000 århus C, Denmark, Geological Institute, Russian Academy of Sciences, Pyzhevsky pereulok 7, 109017 Moscow, Russia,
Claus Heilmann-Clausen
Affiliation:
Department of Earth Sciences, Aarhus University, 8000 århus C, Denmark,

Abstract

Fossil dinoflagellates, when asymmetrical, almost always have features such as antapical horns on the right side reduced relative to features on the left side. A new species here described, Wilsonidium pechoricum, is therefore unusual in having a reduced left antapical horn. W. pechoricum seems to have originated in the northern Tethys in the latest Paleocene. It subsequently spread northwards and became widely distributed in the Peri-Tethys and parts of the Arctic region during the short interval known as the Initial Eocene Thermal Maximum (IETM). The new species was probably favored by extraordinary paleoecological conditions (high sea-surface temperatures and probably also high nutrient levels) prevailing in neritic waters of the IETM; a time during which aberrant morphotypes were also recorded among other planktonic protists. The apparent absence of W. pechoricum from the North Atlantic region suggests that the Turgay Strait may have functioned as a waterway between the Arctic and Peri-Tethys during the IETM. W. pechoricum is the oldest species of the genus Wilsonidium and possibly descended from the genus Apectodinium. Its early appearance points to a Late Paleocene radiation of the Wetzelielloideae before the well-known Early Eocene radiation in the subfamily, and its morphology is in accordance with a monophyletic origin of the group.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akhmetiev, M. A. and Zaporozhetz, N. I. 1996. Smena dinocyst v razrezakh paleogena i nizhnego miocena Russkoy platformi, Krimsko-Kavkazskoy oblasti i Turanskoy pliti kak otrazhenie ecosystemnikh perestroek, p. 5569. In Kuznetzova, K. I. and Muzylev, N. G. (eds.), Iskopaemie Organizmi kak Osnova Stratigrafii, Korrelyacii i Paleobiogeografii Fanerozoya. Voprosi Micropaleontologii, Vipusk 31. GEOS, Moscow. (In Russian).Google Scholar
Alberti, G. 1961. Zur Kenntnis mesozoischer und alttertiärer Dinoflagellaten und Hystrichosphaerideen von Nord- und Mitteldeutschland sowie einigen anderen europäischen Gebieten. Palaeontographica, Abteilung A, 116:158.Google Scholar
Aubry, M.-P., Berggren, W. A., Van Couvering, J. A., Ali, J., Brinkhuis, H., Cramer, B., Kent, D. V., Swisher, C. C. III, Dupuis, C., Gingerich, P. D., Heilmann-Clausen, C., King, C., Ward, D. J., Knox, R. W. O'B., Ouda, K., Stott, L. D., and Thiry, M. 2003. Chronostratigraphic terminology at the Paleocene/Eocene boundary, p. 551566. In Wing, S. L., Gingerich, P. D., Schmitz, B., and Thomas, E. (eds.), Causes and Consequences of Globally Warm Climates in the Early Paleocene. Geological Society of America Special Paper, 369.Google Scholar
Aubry, M.-P. and Requirand, C. 2000. The Rhomboaster–Tribrachiatus lineage: A remarkable succession of events from 55.5 to 53.2 Ma. GFF, 122:1518.Google Scholar
Aubry, M.-P. and Ouda, K. 2003. Introduction, p. iiiv. In Ouda, K. and Aubry, M-P. (eds.), The Upper Paleocene-Lower Eocene of the Upper Nile Valley, Pt. 1, Stratigraphy. Micropaleontology 49, supplement.Google Scholar
Balech, E. 1974. El genero “Protoperidinium“ Bergh, 1881 (“Peridinium“ Ehrenberg, 1831, partim). Museo Argentino de ciencias naturales “Bernardino Rivadavia” e Instituto nacional de investigación de las ciencias naturales, Revista, Hidrobiología, 4:179.Google Scholar
Berggren, W. A., Lucas, S., and Aubry, M.-P. et al. 1998. Late Paleocene-Early Eocene Climatic and Biotic Evolution: An Overview, p. 117. In Aubry, M.-P., Lucas, S. P., and Berggren, W. A. (eds.), Late Paleocene-Early Eocene Climatic and Biotic Events in the Marine and Terrestrial Records. Columbia University Press, New York.Google Scholar
Bergh, R. S. 1881. Bidrag til Cilioflagellaternes Naturhistorie. Foreløbige Meddelelser. Dansk Naturhistorisk Forening i Kjøbenhavn, Videnskabelige Meddelelser. Serie 4, 3:6076.Google Scholar
Bolle, M.-P., Pardo, A., Hinrichs, K. U., Adatte, T., Von Salis, K., Burns, S., Keller, G., and Muzylev, N. 2000. The Paleocene-Eocene transition in the marginal northeastern Tethys (Kazakhstan and Uzbekistan). International Journal of Earth Sciences, 89:390414.CrossRefGoogle Scholar
Bujak, J. P. and Brinkhuis, H. 1998. Global Warming and Dinocyst Changes Across the Paleocene/Eocene Epoch Boundary, p. 277295. In Aubry, M.-P., Lucas, S. P., and Berggren, W. A. (eds.), Late Paleocene-Early Eocene Climatic and Biotic Events in the Marine and Terrestrial Records. Columbia University Press, New York.Google Scholar
Bujak, J. P., and Davies, E. H. 1983. Modern and fossil Peridiniineae. American Association of Stratigraphical Palynologists, Contributions Series, 13, 203 p.Google Scholar
Bütschli, O. 1885. Erster Band. Protozoa, p. 8651088. In Bronn's, H. G. Dr. Klassen und Ordnungen des Thier-Reichs, wissenschaftlich dargestellt in Wort und Bild. C. F. Winter'sche verlachsbuchhcndlung, Leipzig and Heidelberg.Google Scholar
Châteauneuf, J.-J. and Gruas-Cavagnetto, C. 1978. Les zones de Wetzeliellaceae (Dinophyceae) du bassin de Paris. Comparaison et corrélations avec les zones du Paléogène des bassins du Nord-Ouest de l'Europe. Bulletin du B.R.G.M. (deuxieme série) Section IV, no. 2:5993.Google Scholar
Cookson, I. C., and Eisenack, A. 1965. Microplankton from the Dartmoor Formation, sw. Victoria. Proceedings of the Royal Society of Victoria, 79:133137.Google Scholar
Costa, L. I. and Downie, C. 1976. The distribution of the dinoflagellate Wetzeliella in the Palaeogene of north-western Europe. Palaeontology, 19:591614.Google Scholar
Costa, L. I. and Downie, C. 1979. The Wetzeliellaceae: Palaeogene dinoflagellates, p. 3446. In Bharadwaj, D. C., Singh, H. P., and Tiwari, R. S. (eds.), Proceedings Volume II, Fourth International Palynological Conference, Lucknow (1976–1977). Tej Kumar Press Pvt. Ltd, Lucknow, India.Google Scholar
Crouch, E. M., Brinkhuis, H., Vissher, H., Adatte, T., and Bolle, M.-P. 2003. Late Paleocene-early Eocene dinoflagellate cyst records from the Tethys: Further observations on the global distribution of Apectodinium, p. 113131. In Wing, S. L., Gingerich, P. D., Schmitz, B., and Thomas, E. (eds.), Causes and Consequences of Globally Warm Climates in the Early Paleocene. Geological Society of America Special Paper, 369.Google Scholar
Crouch, E. M., Heilmann-Clausen, C., Brinkhuis, H., Morgans, H. E. G., Rogers, K. M., Egger, H., and Schmitz, B. 2001. Global dinoflagellate event associated with the late Paleocene thermal maximum. Geology, 29:315318.Google Scholar
Deflandre, G. and Cookson, I. C. 1955. Fossil microplankton from Australian Late Mesozoic and Tertiary sediments. Australian Journal of Marine and Freshwater Research, 6:242313.Google Scholar
Dodge, J. D. 1985. Atlas of Dinoflagellates. Farrand Press, London, 119 p.Google Scholar
Duxbury, S. 1983. A study of dinoflagellate cysts and acritarchs from the Lower Greensand (Aptian to Lower Albian) of the Isle of Wight, southern England. Palaeontographica, Abteilung B, 186:1880.Google Scholar
Edwards, L. E. 1989. Dinoflagellate cysts from the Lower Tertiary Formations, Haynesville cores, Richmond County, Virginia. U.S. Geological Survey Professional Paper 1489-C:112.Google Scholar
Egger, H. 1995. Die Lithostratigraphie der Altlengbach-Formation und der Anthering-Formation im Rhenodanubischen Flysch (Ostalpen, Penninikum). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 196:6991.Google Scholar
Egger, H., Fenner, J., Heilmann-Clausen, C., Rögl, F., Sachsenhofer, R. F., and Schmitz, B. 2003. Paleoproductivity of the northwestern Tethyan margin (Anthering Section, Austria) across the Paleocene-Eocene transition, p. 133146. In Wing, S. L., Gingerich, P. D., Schmitz, B., and Thomas, E. (eds.), Causes and Consequences of Globally Warm Climates in the Early Paleocene. Geological Society of America Special Paper, 369.Google Scholar
Egger, H., Heilmann-Clausen, C., and Schmitz, B. 2000. The Paleocene/Eocene-boundary interval of a Tethyan deep-sea section (Austria) and its correlation with the North Sea Basin. Société Géologique de France Bulletin, 171:207216.CrossRefGoogle Scholar
Ehrenberg, C. G. 1831. Animalia evertebrata, unpaginated text. In Hemprich, P. C. and Ehrenberg, C. G. Symbolae physicae. Pars zoologica. Abh. Akad. Wiss. Berlin 1831, fide Fensome, et al. (1993, p. 222).Google Scholar
Ehrenberg, C. G. 1838. Über das Massenverhältniss der jetzt lebenden Kiesel-Infusorien und über ein neues Infusorien-Conglomerat als Polierschiefer von Jastraba in Ungarn. Königlisch Akademie der Wissenschaften zu Berlin, Abhandlungen, 1836, 1:109135.Google Scholar
Eisenack, A. 1938. Die Phosphoritknollen der Bernsteinformation als über-lieferer tertiären Planktons. Schriften der Physikalisch-Ökonomischen Gesellschaft zu Königsberg, 70:181188.Google Scholar
Eisenack, A. 1954. Mikrofossilien aus Phosphoriten des samländischen Unteroligocäns und über die Einheitlichkeit der Hystrichosphaerideen. Palaeontographica, Abteilung A, 105:4995.Google Scholar
Evitt, W. R. 1984. Some techniques for preparing, manipulating and mounting dinoflagellates. Journal of Micropalaeontology, 3:1118.Google Scholar
Evitt, W. R. 1985. Sporopollenin dinoflagellate cysts. Their morphology and interpretation. American Association of Stratigraphic Palynologists, Monograph Series, 1, 333 p.Google Scholar
Evitt, W. R., Damassa, S. P., and Nairn, N. F. 1998. A tiger by the tail: The exophragm of the Cretaceous-Paleocene dinoflagellate Palaeoperidinium and its implications. Palynology, 22:155.Google Scholar
Fensome, R. A., Taylor, F. J. R., Norris, G., Sarjeant, W. A. S., Wharton, D. I., and Williams, G. L. 1993. A classification of living and fossil dinoflagellates. Micropaleontology Special Publication Number 7, 351 p.Google Scholar
Gocht, H. 1955. Rhombodinium und Dracodinium, zwei neue Dinoflagellaten-Gattungen aus dem norddeutschen Tertiär. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 2:8492.Google Scholar
Gocht, H. 1969. Formengemeinschaften alttertiären Mikroplanktons aus Bohrproben des Erdölfeld Meckelfeld bei Hamburg. Palaeontographica, Abteilung B, 126:1100.Google Scholar
Haeckel, A. 1894. Entwurf eines natürlischen Systems der Organismen auf Grund ihrer Stammegeschichte, Erster Teil: Systematische Phylogenie der Protisten und Pflanzen. Georg Reimer, Berlin, 400 p.Google Scholar
Harland, R. 1979. The Wetzeliella (Apectodinium) homomorpha plexus from the Palaeogene/earliest Eocene of North-west Europe, p. 5970. In Bharadwaj, D. C., Singh, H. P., and Tiwari, R. S. (eds.), Proceedings Volume II, Fourth International Palynological Conference, Lucknow (1976–1977). Tej Kumar Press Pvt. Ltd, Lucknow, India.Google Scholar
Iakovleva, A. I. 2000. Les Dinoflagellés du Paléocène-Eocène de la Sibérie occidentale et des régions avoisinantes: Application stratigraphique, paléoécologique et paléogéographique. Unpublished Ph.D. dissertation, University of Montpellier II, Montpellier, 103 p.Google Scholar
Iakovleva, A. I., Brinkhuis, H., and Cavagnetto, C. 2001. Late Palaeocene-Early Eocene dinoflagellate cysts from the Turgay Strait, Kazakhstan; correlations across ancient seaways. Palaeogeography, Palaeoclimatology, Palaeoecology, 172:243268.Google Scholar
Iakovleva, A. I., Oreshkina, T. V., Alekseev, A. S., and Rousseau, D.-D. 2000. A new Paleogene micropaleontological and palaeogeographical data in the Petchora Depression, northeastern European Russia. C. R. Acad. Sci. Paris, Sciences de la Terre et des planètes, 330:485491.Google Scholar
Jörgensen, E. 1900. Protophyten und Protozoën im Plankton aus der norwegischen Westküste. Bergens Museums Aarbok, 1899, 6:1112.Google Scholar
Kahn, A. and Aubry, M.-P. 2004. Provincialism associated with the Paleocene/Eocene thermal maximum: Temporal constraint. Marine Micropaleontology, 52:117131.Google Scholar
Lentin, J. K. and Vozhennikova, T. F. 1989. The fossil dinoflagellate cysts Kisselovia emend. and Charlesdowniea gen. nov. Review of Palaeobotany and Palynology, 58:215229.Google Scholar
Lentin, J. K. and Williams, G. L. 1976. A monograph of fossil peridinoid dinoflagellate cysts. Bedford Institute of Oceanography, Report Series, BI-R-75-16, 237 p.Google Scholar
Lentin, J. K. and Williams, G. L. 1977. Fossil dinoflagellates: Index to genera and species, 1977 edition. Bedford Institute of Oceanography, Report Series, BI-R-77-8, 209 p.Google Scholar
Lentin, J. K. and Williams, G. L. 1981. Fossil dinoflagellates: Index to genera and species, 1981 edition. Bedford Institute of Oceanography, Report Series, BI-R-81-12, 345 p.Google Scholar
Luterbacher, H. P., Ali, J. R., Brinkhuis, H., Gradstein, F. M., Hooker, J. J., Monechi, S., Ogg, J. G., Powell, J., Röhl, U., Sanfilippo, A., and Schmitz, B. 2004. The Paleogene Period, p. 384408. In Gradstein, F. M., Ogg, J. G., and Smith, A. G. (eds.), A Geologic Time Scale 2004. Cambridge University Press, Cambridge, U.K. Google Scholar
Meulenkamp, J. E., Sissingh, W., Calvo, J. P., Daams, R., Londeix, L., Cahuzac, B., Kovac, M., Nagymarosy, A., Badescu, D., Rusu, A., Studencka, B., Beniamovskii, V. N., Scherba, I. G., Roger, J., Platel, J.-P., Hirsch, F., Sadek, A., Abdel-Gawad, G. I., Zaghbib-Turki, D., Ben Ismail-Lattrache, K., Bouaziz, S., Karoui-Yaakoub, N., and Yaich, C. 2000. 17.- Early to Middle Ypresian (55-51 Ma), p. 155162. In Dercourt, J., Gaetani, M., Vrielynck, B., Barrier, E., Biju-Duval, B., Brunet, M. F., Cadet, J. P., Crasquin, S., and Sandulescu, M. (eds.), Atlas Peri-Tethys, Palaeogeographical maps. CCGM/CGMW, Paris.Google Scholar
Monteil, E. 1991. Revision of the dinoflagellate cyst genus Cometodinium Deflandre & Courteville, 1939, emend. Enantiomorphy in a fossil dinoflagellate cyst population. Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine, 15:439459.Google Scholar
Pascher, A. 1914. Über Flagellaten und Algen. Berichte der Deutschen Botanischen Gesellschaft, 36:136160.Google Scholar
Paulsen, O. 1907. The Peridiniales of the Danish waters. Meddelelser fra Kommissionen for Havundersøgelser, Serie Plankton, 1 (5), 26 p.Google Scholar
Powell, A. J. 1992. 4. Dinoflagellate cysts of the Tertiary System, p. 155251. In Powell, A. J. (ed.), A Stratigraphic Index of Dinoflagellate Cysts. Chapman & Hall, London.Google Scholar
Prévôt, L., Lucas, J., and Doubinger, J. 1979. Une correspondance entre le contenu palynologique et la composition minéralogique et chimique d'une série phosphatée sédimentaire (Ganntour, Maroc). Sci. Géol., Bull., 32:6990. Strasbourg.Google Scholar
Radionova, E. P., Beniamovski, V. N., Iakovleva, A. I., Muzylöv, N. G., Oreshkina, T. V., Shcherbinina, E. A., and Kozlova, G. E. 2003. Early Paleogene transgressions: Stratigraphical and sedimentological evidence from the northern Peri-Tethys, p. 239261. In Wing, S. L., Gingerich, P. D., Schmitz, B., and Thomas, E. (eds.), Causes and Consequences of Globally Warm Climates in the Early Paleocene. Geological Society of America Special Paper, 369.Google Scholar
Röhl, U., Bralower, T. J., Norris, R. D., and Wefer, J. 2000. New chronology for the late Paleocene thermal maximum and its environmental implications. Geology, 28:927930.Google Scholar
Röhl, U., Norris, R. D., and Ogg, J. G. 2003. Cyclostratigraphy of upper Paleocene and lower Eocene sediments at Blake Nose Site 1051 (western North Atlantic), p. 567588. In Wing, S. L., Gingerich, P. D., Schmitz, B., and Thomas, E. (eds.), Causes and Consequences of Globally Warm Climates in the Early Paleocene. Geological Society of America Special Paper, 369.Google Scholar
Sarjeant, W. A. S. 1967. The genus Palaeoperidinium Deflandre (Dinophyceae). Grana Palynologica, 7:243258.Google Scholar
Stott, L. D., Kennett, J. P., Shackleton, N. J., and Corfield, R. M. 1990. The evolution of Antarctic surface waters during the Paleogene: inferences from stable isotopic composition of planktonic foraminifera, ODP Leg 113. Proceedings of the Ocean Drilling Program, Scientific Results, 113:849863.Google Scholar
Stupin, S. I. and Muzylev, N. G. 2001. The Late Paleocene ecological crisis in epicontinental basins of the eastern Peritethys: Microbiota and accumulation conditions of sapropelic bed. Stratigraphy and Geological Correlation, 9:501507.Google Scholar
Taylor, F. J. R. 1987. Dinoflagellate morphology, p. 2491. In Taylor, F. J. R. (ed.), The biology of dinoflagellates. Botanical Monographs, Volume 21, Blackwell Scientific Publications, Oxford, U.K. Google Scholar
Williams, G. L. and Downie, C. 1966. Wetzeliella from the London Clay, p. 182198. In Davey, R. J., Sarjeant, W. A. S., Downie, C., and Williams, G. L. (eds.), Studies on Mesozoic and Cainozoic dinoflagellate cysts. Bulletin of the British Museum (Natural History) Geology, Supplement, 3:182198.Google Scholar
Wilson, G. J. 1967. Some species of Wetzeliella Eisenack (Dinophyceae) from New Zealand Eocene and Paleocene strata. New Zealand Journal of Botany, 5:469497.Google Scholar
Wing, S. L., Gingerich, P. D., Schmitz, B., and Thomas, E. 2003. Preface, p.viix. In Wing, S. L., Gingerich, P. D., Schmitz, B., and Thomas, E. (eds.), Causes and Consequences of Globally Warm Climates in the Early Paleocene. Geological Society of America Special Paper 369.Google Scholar
Zachos, J. C., Lohmann, K. C., Walker, J. C. G., and Wise, S. W. 1993. Abrupt climate change and transient climates during the Paleogene: A marine perspective. Journal of Geology, 101:191213.Google Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K. 2001. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science, 292:686693.Google Scholar
Zachos, J. C., Stott, L. D., and Lohmann, K. C. 1994. Evolution of early Cenozoic marine temperatures. Paleoceanography, 9:353387.Google Scholar