Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T21:27:39.608Z Has data issue: false hasContentIssue false

Temporal data in phylogenetic systematics: an example from the mammalian fossil record

Published online by Cambridge University Press:  20 May 2016

J. G. M. Thewissen*
Affiliation:
Department of Biological Anthropology and Anatomy, Duke University Medical Center, Durham, North Carolina 27710

Abstract

A method of phylogenetic inference is proposed for taxa that are known from large samples spaced closely in time. The method employs elements of cladistic and stratophenetic methods, and consists of four steps. 1) Morphologically homogeneous clusters are recognized within temporally and geographically constrained samples. 2) Temporally disjunct and geographically dispersed taxa are recognized, and their anagenetic evolution and geographic variation documented. 3) A character matrix is constructed for the taxa and analyzed cladistically. 4) Resulting cladograms are used to construct a phylogenetic tree with additional input from temporal, morphological, ecological, and geographical data. This method supplements the use of cladistically analyzed morphological data with data that are not suited for cladistic analysis, and thus reduces the amount of unused data.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Archibald, J. D., Gingerich, P. D., Lindsay, E. H., Clemens, W. A., Krause, D. W., and Rose, K. D. 1987. First North American Land Mammal Ages of the Cenozoic Era, p. 2476. In Woodburne, M. O. (ed.), Cenozoic Mammals of North America: Geochronology and Biostratigraphy. University of California Press, Berkeley.Google Scholar
Archie, J. W. 1985. Methods for coding variable morphological features for numerical taxonomic analysis. Systematic Zoology, 34:326345.Google Scholar
Ax, P. 1987. The Phylogenetic System. John Wiley & Sons, Chichester, 340 p.Google Scholar
Bartels, W. S. 1987. Fossil reptile assemblages and depositional environments of selected early Tertiary vertebrate bone concentrations, Bighorn Basin, Wyoming. Unpubl. , University of Michigan, Ann Arbor, 630 p.Google Scholar
Behrensmeyer, A. K. 1982. Time resolution in fluvial vertebrate assemblages. Paleobiology, 8:211227.Google Scholar
Bell, M. A., Baumgartner, J. V., and Olson, E. C. 1985. Patterns of temporal change in single morphological characters of a Miocene stickleback fish. Paleobiology, 11:258271.CrossRefGoogle Scholar
Bown, T. M., and Rose, K. D. 1987. Patterns of dental evolution in early Eocene anaptomorphine primates (Omomyidae) from the Bighorn Basin, Wyoming. Journal of Paleontology, Memoir 23, 162 p.Google Scholar
Chappill, J. A. 1989. Quantitative characters in phylogenetic analysis. Cladistics, 5:217231.Google Scholar
Cisne, J. L., Chandlee, G. O., Rabe, B. D., and Cohen, J. A. 1982. Clinal variation, episodic evolution, and possible parapatric speciation: the trilobite Flexicalymene senaria along an Ordovician depth gradient. Lethaia, 15:325341.Google Scholar
Cope, E. D. 1882. Contributions to the history of the Vertebrata of the lower Eocene of Wyoming and New Mexico, made during 1881. Proceedings of the American Philosophical Society, 34:139191.Google Scholar
Eldredge, N. 1979. Cladism and common sense, p. 165198. In Cracraft, J. and Eldredge, N. (eds.), Phylogenetic Analysis and Paleontology. Columbia University Press, New York.CrossRefGoogle Scholar
Eldredge, N., and Cracraft, J. 1980. Phylogenetic Patterns and the Evolutionary Process. Columbia University Press, New York, 349 p.Google Scholar
Eldredge, N., and Novacek, M. J. 1985. Systematics and paleobiology. Paleobiology, 11:6574.Google Scholar
Farris, J. S. 1970. Methods for computing Wagner trees. Systematic Zoology, 19:8392.Google Scholar
Fisher, D. C. 1981. The role of functional analysis in phylogenetic inference: examples from the history of the Xiphosura. American Zoologist, 21:4762.CrossRefGoogle Scholar
Fisher, D. C. 1982. Phylogenetic and macroevolutionary patterns within the Xiphosurida. North American Paleontological Convention III, Proceedings, 1:175180.Google Scholar
Fisher, D. C. 1988. Stratocladistics: intergrating stratigraphic and morphologic data in phylogenetic analysis. Geological Society of America, Abstracts and Programs, 20(7):A186.Google Scholar
Fortey, R. A., and Jefferies, R. P. S. 1982. Fossils and phylogeny—a compromise approach, p. 197234. In Joysey, K. A. and Friday, A. E. (eds.), Problems in Phylogenetic Reconstruction. Systematics Association Special Volume 21, Academic Press, London.Google Scholar
Gauthier, J., Kluge, A. G., and Rowe, T. 1988. Amniote phylogeny and the importance of fossils. Cladistics, 4:105209.Google Scholar
Gazin, C. L. 1956. Paleocene mammalian faunas of the Bison Basin in south-central Wyoming. Smithsonian Miscellaneous Collections, 131:157.Google Scholar
Gingerich, P. D. 1976. Paleontology and phylogeny: patterns of evolution at the species level in early Tertiary mammals. American Journal of Science, 276:128.Google Scholar
Gingerich, P. D. 1979a. The stratophenetic approach to phylogeny reconstruction in vertebrate paleontology, p. 4177. In Cracraft, J. and Eldredge, N. (eds.), Phylogenetic Analysis and Paleontology. Columbia University Press, New York.Google Scholar
Gingerich, P. D. 1979b. Paleontology, phylogeny, and classification: an example from the mammalian fossil record. Systematic Zoology, 28:451464.CrossRefGoogle Scholar
Gingerich, P. D. 1983. Paleocene–Eocene faunal zones and a preliminary analysis of Laramide structural deformation in the Clark's Fork Basin, Wyoming. Wyoming Geological Association, 34th Annual Field Conference, Guidebook:185195.Google Scholar
Gingerich, P. D. 1985. Species in the fossil record: concepts, trends, and transitions. Paleobiology, 11:2741.Google Scholar
Gingerich, P. D. 1989. New earliest Wasatchian mammalian fauna from the Eocene of Northwestern Wyoming: composition and diversity in a rarely sampled high-floodplain assemblage. University of Michigan, Papers on Paleontology, 28:197.Google Scholar
Granger, W. 1915. Part III.—Order Condylarthra. Families Phenacodontidae and Meniscotheriidae, p. 329361. In Matthew, W. D. and Granger, W. (eds.), A revision of the lower Eocene Wasatch and Wind River Faunas. Bulletin of the American Museum of Natural History, 39.Google Scholar
Harper, C. W. 1976. Phylogenetic inference in paleontology. Journal of Paleontology, 50:180193.Google Scholar
Kay, R. F. 1984. On the use of anatomical features to infer the foraging behavior in extinct primates, p. 2153. In Rodman, P. S. and Cant, J. G. H. (eds.), Adaptations for Foraging in Nonhuman Primates. Columbia University Press, New York.CrossRefGoogle Scholar
Kellogg, D. E. 1983. Phenology of morphologic change in radiolarian lineages from deep-sea cores: implications for macroevolution. Paleobiology, 9:355362.Google Scholar
Kellogg, D. E., and Hays, J. D. 1975. Microevolutionary patterns in late Cenozoic Radiolaria. Paleobiology, 1:150160.CrossRefGoogle Scholar
Kluge, A. G., and Farris, J. S. 1969. Quantitative phyletics and the evolution of anurans. Systematic Zoology, 18:132.Google Scholar
Krishtalka, L., and Stucky, R. K. 1985. Revision of the Wind River Faunas, early Eocene of central Wyoming. Part 7. Revision of Diacodexis (Mammalia, Artiodactyla). Annals of Carnegie Museum, 54:413486.Google Scholar
Kuss, S. E. 1973. Die pleistozaenen Sauegetierfaunen der ostmedi-terranen Inseln. Ihr Alter und ihre Herkunft. Berichte der Naturfor-schenden Gesellschaft, Freiburg im Breisgau, 63:4971.Google Scholar
Lazarus, D. B., and Prothero, D. R. 1984. The role of stratigraphic and morphologic data in phylogeny. Journal of Paleontology, 58:163172.Google Scholar
Malmgren, B. A., and Kennett, J. P. 1981. Phyletic gradualism in a late Cenozoic planktonic foraminiferal lineage; DSDP Site 284, southwest Pacific. Paleobiology, 7:230240.CrossRefGoogle Scholar
Mayr, E. 1969. Principles of Systematic Zoology. McGraw-Hill Book Company, New York, 429 p.Google Scholar
Nelson, G., and Platnick, N. 1981. Systematics and Biogeography, Cladistics and Vicariance. Columbia University Press, New York, 567 p.Google Scholar
Patterson, B., and West, R. M. 1973. A new late Paleocene phenacodont (Mammalia: Condylarthra) from western Colorado. Breviora, Museum of Comparative Zoology, 403:17.Google Scholar
Radinsky, L. B. 1966. The adaptive radiation of the phenacodontid condylarths and the origin of the Perissodactyla. Evolution, 20:408417.CrossRefGoogle ScholarPubMed
Rose, K. D. 1981. The Clarkforkian Land-Mammal Age and mammalian faunal composition across the Paleocene–Eocene boundary. University of Michigan, Papers on Paleontology, 26:1196.Google Scholar
Russell, L. S. 1929. Paleocene vertebrates from Alberta. American Journal of Science, 17:96103.Google Scholar
Schaeffer, B., Hecht, M. K., and Eldredge, N. 1972. Phylogeny in paleontology. Evolutionary Biology, 6:3146.Google Scholar
Schankler, D. M. 1980. Faunal zonation of the Willwood Formation in the Central Bighorn Basin, Wyoming. University of Michigan, Papers on Paleontology, 24:99114.Google Scholar
Schindel, D. E. 1980. Microstratigraphic sampling and the limits of paleontologic resolution. Paleobiology, 6:408426.CrossRefGoogle Scholar
Schoch, R. M. 1986. Phylogeny Reconstruction in Paleontology. Van Nostrand Reinhold, New York, 351 p.Google Scholar
Simpson, G. G. 1943. Criteria for genera, species, and subspecies in zoology and paleozoology. Annals of the New York Academy of Sciences, 44:105188.Google Scholar
Sondaar, P. Y. 1977. Insularity and its effect on mammal evolution, p. 671707. In Hecht, M. K., Goody, P. C., and Hecht, B. M. (eds.), Major Patterns in Vertebrate Evolution. Plenum Publishing Corporation, New York.Google Scholar
Swofford, D. L. 1985. PAUP, Phylogenetic Analysis Using Parsimony, Version 2.4. Privately printed documentation. Illinois Natural History Survey, Champaign, Illinois.Google Scholar
Thewissen, J. G. M. 1990. Evolution of Paleocene and Eocene Phenacodontidae (Mammalia, Condylarthra). University of Michigan, Papers on Paleontology, 29:1107.Google Scholar
West, R. M. 1976. The North American Phenacodontidae (Mammalia, Condylarthra). Contributions to Biology and Geology, Milwaukee Public Museum, 6:178.Google Scholar
Wiley, E. O. 1981. Phylogenetics, the Theory and Practice of Phylogenetic Systematics. J. Wiley and Sons, New York, 439 p.Google Scholar