Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T13:27:13.811Z Has data issue: false hasContentIssue false

Revision of Ordovician chitinozoan Lagenochitina esthonica sensu lato: morphometrics, biostratigraphy and paleobiogeography

Published online by Cambridge University Press:  20 August 2021

Yan Liang*
Affiliation:
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China , ,
Jaak Nõlvak
Affiliation:
Department of Geology, Tallinn University of Technology, Tallinn 19086, Estonia ,
Honghe Xu
Affiliation:
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China , ,
Yansen Chen
Affiliation:
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China , ,
Olle Hints
Affiliation:
Department of Geology, Tallinn University of Technology, Tallinn 19086, Estonia ,
*
*Corresponding author

Abstract

Lagenochitina esthonica is a globally distributed chitinozoan in Early to Middle Ordovician rocks. It is regarded as an index species for the early Floian in North America and has a stratigraphically constrained range in other regions. Lagenochitina esthonica is distinguished from other chitinozoans by a distinct flexure, a nearly rounded-square chamber, and a cylindrical neck with a flaring collar. However, since the first description of the species in the 1950s, it has included two varieties: a relatively short form with a test length ~400 μm, and a slender form usually longer than 600 μm. In order to revise the taxonomy of the L. esthonica group, we carried out a statistical morphometric study of a large collection of well-preserved specimens from the Baltic region where the taxon was first established. Additionally, the stratigraphic and geographic distribution of both forms was analyzed based on available occurrence data. The results show that the short form occurs in the upper Tremadocian to lower Dapingian, whereas the slender form is mostly reported from the lower and middle Darriwilian. Both forms are identified on Baltica; the short form has also been reported from Laurentia and South China, whereas the other is known also from Avalonia and Gondwana. The morphological distinction, together with differences in stratigraphic and spatial ranges, suggest that the two forms represent separate species: the original stout L. esthonica, based on the morphology of the holotype, and the slender L. megaesthonica n. sp., described herein. The updated taxonomy enhances the stratigraphic and biogeographic usefulness of lagenochitinids globally.

UUID: http://zoobank.org/ec49166e-2a8d-4941-8723-f023853c5a7e.

Type
Articles
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achab, A., 1980, Chitinozoaires de l'Arenig inférieur de la Formation de Lévis (Québec, Canada): Review of Palaeobotany and Palynology, v. 31, p. 219239.CrossRefGoogle Scholar
Achab, A., 1986, Assemblages de chitinozoaires dans l'Ordovicien inférieur de l'est du Canada: Canadian Journal of Earth Sciences, v. 23, p. 682695.CrossRefGoogle Scholar
Achab, A., 1989, Ordovician chitinozoan zonation of Quebec and western Newfoundland: Journal of Paleontology, v. 63, p. 1424.CrossRefGoogle Scholar
Al-Shawareb, A., Miller, M., and Vecoli, M., 2017, Late Ordovician (Katian) chitinozoans from northwest Saudi Arabia: biostratigraphic and paleoenvironmental implications: Revue de Micropaléontologie, v. 60, p. 333369.CrossRefGoogle Scholar
Asselin, E., Achab, A., and Soufiane, A., 2004, Biostratigraphic significance of lower Paleozoic microfaunas from eastern Canada: Canadian Journal of Earth Sciences, v. 41, p. 489505.CrossRefGoogle Scholar
Bockelie, T.G., 1978, Comments on chitinozoan classification: Norsk Geologisk Tidsskrift, v. 58, p. 301304.Google Scholar
Bockelie, T.G., 1980, Early Ordovician Chitinozoa from Spitsbergen: Palynology, v. 4, p. 114.CrossRefGoogle Scholar
Butcher, A., 2013, Chitinozoans from the middle Rhuddanian (lower Llandovery, Silurian) ‘hot’ shale in the E1-NC174 core, Murzuq Basin, SW Libya: Review of Palaeobotany and Palynology, v. 198, p. 6291.CrossRefGoogle Scholar
Chen, X.H., and Zhang, M., 2005, Early Ordovician chitinozoans from the Honghuayuan Formation and lower part of Meitan Formation in Datangkou of Chengkou, Chongqing: Acta Micropalaeontologica Sinica, v. 44, p. 4456. [in Chinese with English abstract]Google Scholar
Chen, X.H., Paris, F., Wang, X.F., and Zhang, M., 2009a, Early and Middle Ordovician chitinozoans from the Dapingian type sections, Yichang area, China: Review of Palaeobotany and Palynology, v. 153, p. 310330.CrossRefGoogle Scholar
Chen, X.H., Zhang, M., and Wang, C.S., 2009b, Ordovician Chitinozoan from South China: Beijing, Geological Publishing House, 218 p.Google Scholar
Cocks, L.R.M., and Torsvik, T.H., 2005, Baltica from the late Precambrian to mid-Palaeozoic times: the gain and loss of a terrane's identity: Earth-Science Reviews, v. 72, p. 3966.CrossRefGoogle Scholar
Combaz, A., and Peniguel, G., 1972, Étude palynostratigraphique de l'Ordovicien dans quelques sondages du Bassin de Canning (Australie Occidentale): Bulletin du Centre de Recherches Pau-SNPA 6, p. 121167.Google Scholar
de la Puente, G.S., and Rubinstein, C.V., 2013, Ordovician chitinozoans and marine phytoplankton of the Central Andean Basin, northwestern Argentina: a biostratigraphic and paleobiogeographic approach: Review of Palaeobotany and Palynology, v. 198, p. 1426.CrossRefGoogle Scholar
de la Puente, G.S., Paris, F., and Vaccari, E., 2020, Latest Ordovician–earliest Silurian chitinozoans from the Puna region, north-western Argentina (Western Gondwana): Bulletin of Geosciences, v. 95, p. 391418.CrossRefGoogle Scholar
De Weirdt, J., Vandenbroucke, T.R.A., Cocq, J., Russell, C., Davies, J.R., Melchin, M., and Zalasiewicz, J., 2019, Chitinozoan biostratigraphy of the Rheidol Gorge Section, Central Wales, UK: a GSSP replacement candidate for the Rhuddanian-Aeronian boundary: Papers in Palaeontology, v. 6, p. 173192.CrossRefGoogle Scholar
Downie, C.E.A., Lister, T.R., Harris, A.L., and Fettes, D.J., 1971, A Palynological Investigation of the Dalradian Rocks of Scotland: London, Her Majesty's Stationery Office, 30 p.Google Scholar
Dronov, A.V., and Rozhnov, S.V., 2007, Climatic changes in the Baltoscandian basin during the Ordovician: sedimentological and palaeontological aspects: Acta Palaeontologica Sinica, v. 46, p. 108113.Google Scholar
Eisenack, A., 1931, Neue Mikrofossilien des baltischen Silurs. I: Paläontologische Zeitschrift, v. 13, p. 74118.CrossRefGoogle Scholar
Eisenack, A., 1955, Neue Chitinozoen aus dem Silur des Baltikums und dem Devon der Eifel: Senckenbergiana Lethaea, v. 36, p. 311319.Google Scholar
Eisenack, A., 1959, Neotypen baltischer Silur-Chitinozoen und neue Arten: Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, v. 108, p. 120.Google Scholar
Eisenack, A., 1968, Über Chitinozoen des baltischen Gebietes: Palaeontographica Abteilung A, p. 137198.Google Scholar
Eisenack, A., 1972, Beiträge zur Chitinozoen-Forschung: Palaeontographica Abteilung A, p. 117130.Google Scholar
Eisenack, A., 1976a, Mikrofossilien aus dem Vaginatenkalk von Hälludden, Öland: Palaeontographica Abteilung A, v. 154, p. 181203.Google Scholar
Eisenack, A., 1976b, Weiterer beitrag zur chitinozoen-Forschung: Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, v. 1976, p. 641652.Google Scholar
Gao, L.D., 1986, Lower Ordovician chitinozoans from Wuding and Luquan, Yunnan Province: Professional Papers of Stratigraphy and Palaeontology, v. 18, p. 133152. [in Chinese with English abstract]Google Scholar
Geng, L.Y., 1984, Chitinozoa from the Fengsiang, Huanghuayuan and Dawan formations of Huanghuachang, Yichang, Hubei, in Nanjing Institute of Geology and Palaeontology, ed., Stratigraphy and Palaeontology of Systemic Boundaries in China: Ordovician-Silurian Boundary: Hefei, Anhui Science and Technology Publishing House, p. 509516.Google Scholar
Grahn, Y., 1980, Early Ordovician Chitinozoa from Öland: Sveriges Geologiska Undersökning, ser. C, v. 775, 41 p.Google Scholar
Grahn, Y., 1984, Ordovician Chitinozoa from Tallinn, northern Estonia: Review of Palaeobotany and Palynology, v. 43, p. 531.CrossRefGoogle Scholar
Grahn, Y., 2005a, Silurian and Lower Devonian chitinozoan taxonomy and biostratigraphy of the Trombetas Group, Amazonas Basin, northern Brazil: Bulletin of Geosciences, v. 80, p. 245276.Google Scholar
Grahn, Y., 2005b, Devonian chitinozoan biozones of western Gondwana: Acta Geologica Polonica, v. 55, p. 211227.Google Scholar
Grahn, Y., 2006, Ordovician and Silurian chitinozoan biozones of western Gondwana: Geological Magazine, v. 143, p. 509529.CrossRefGoogle Scholar
Grahn, Y., and Gutiérrez, P.R, 2001, Silurian and Middle Devonian Chitinozoa from the Zapla and Santa Bárbara ranges, Tarija Basin, northwestern Argentina: Ameghiniana, v. 38, p. 3550.Google Scholar
Grahn, Y., and Nõlvak, J., 2007, Ordovician Chitinozoa and biostratigraphy from Skåne and Bornholm, southernmost Scandinavia—an overview and update: Bulletin of Geosciences, v. 82, p. 1126.CrossRefGoogle Scholar
Grahn, Y., Nõlvak, J., and Paris, F., 1996, Precise chitinozoan dating of Ordovician impact events in Baltoscandia: Journal of Micropalaeontology, v. 15, p. 2135.CrossRefGoogle Scholar
Hints, O., and Nõlvak, J., 2006, Early Ordovician scolecodonts and chitinozoans from Tallinn, north Estonia: Review of Palaeobotany and Palynology, v. 139, p. 189209.CrossRefGoogle Scholar
Jenkins, W.A.M., 1967, Ordovician Chitinozoa from Shropshire: Palaeontology, v. 10, p. 436488.Google Scholar
Liang, Y., 2015, Early–Middle Ordovician Chitinozoans of the Upper Yangtze Region, South China—Systematics, Biostratigraphy and Biodiversity [Ph.D. dissertation]: Nanjing, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 244 p.Google Scholar
Liang, Y., Servais, T., Tang, P., Liu, J., and Wang, W., 2017, Tremadocian (Early Ordovician) chitinozoan biostratigraphy of South China: an update: Review of Palaeobotany and Palynology, v. 247, p. 149163.CrossRefGoogle Scholar
Liang, Y., Hints, O., Luan, X.C., Tang, P., Nõlvak, J., and Zhan, R.B., 2018, Lower and Middle Ordovician chitinozoans from Honghuayuan, South China: biodiversity patterns and response to environmental changes: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 500, p. 95105.CrossRefGoogle Scholar
Liang, Y., Hints, O., Servais, T., Luan, X., Nõlvak, J., Tang, P., and Wu, R., 2019, Palaeoenvironmental and biostratigraphical implications of selected Floian and Dapingian (Ordovician) chitinozoans of the South China Palaeoplate: Lethaia, v. 52, p. 220231.CrossRefGoogle Scholar
Liang, Y., Hints, O., Tang, P., Cai, C., Goldman, D., Nõlvak, J., Tihelka, E., Pang, K., Bernardo, J., and Wang, W., 2020a, Fossilized reproductive modes reveal a protistan affinity of Chitinozoa: Geology, v. 48, p. 12001204.CrossRefGoogle Scholar
Liang, Y., Wang, G., Servais, T., Wu, R.C., Nõlvak, J., Hints, O., Wei, X., Gong, F.Y., and Yan, G.Z., 2020b, Age constraints of the Hungshihyen Formation (Early to Middle Ordovician) on the western margin of the Yangtze Platform, South China: new insights from chitinozoans: Palaeoworld, v. 29, p. 6674.Google Scholar
Männil, R., 1966, Evolution of the Baltic Basin during the Ordovician: Tallinn, Valgus, 200 p. [in Russian with English summary].Google Scholar
Nestor, H., and Einasto, R., 1997, Ordovician and Silurian carbonate sedimentation basin, in Raukas, A., and Teedum, E.A., eds., Geology and Mineral Resources of Estonia: Tallinn, Estonian Academy Publishers, p. 19204.Google Scholar
Nõlvak, J., and Grahn, Y., 1993, Ordovician chitinozoan zones from Baltoscandia: Review of Palaeobotany and Palynology, v. 79, p. 245269.CrossRefGoogle Scholar
Nõlvak, J., Liang, Y., and Hints, O., 2019, Early diversification of Ordovician chitinozoans on Baltica: new data from the Jägala waterfall section, northern Estonia: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 525, p. 1424.CrossRefGoogle Scholar
Nowak, H., Servais, T., Pittet, B., Vaucher, R., Akodad, M., Gaines, R.R., and Vandenbroucke, T.R.A., 2016, Palynomorphs of the Fezouata Shale (Lower Ordovician, Morocco): age and environmental constraints of the Fezouata Biota: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 460, p. 6274.CrossRefGoogle Scholar
Obut, A.M., 1973, On the geographic distribution, comparative morphology, ecology, phylogeny and systematic position of chitinozoans, in Zhuravleva, J.T., ed., Environment and Life in the Geological Past, Novosibirsk, Scientific Press (Siberian Branch), p. 7284. [in Russian]Google Scholar
Obut, O.T., 1995, New species of chitinozoans in the Ordovician of Moscow Syneclise: Geologiya i geokhimiya osadochnykh basseynov Sibiri, Novosibirsk, p. 4753. [in Russian]Google Scholar
Olaru, L., 2005, Some problems of biostratigraphy and palynological correlation of Upper Formation (Tg. 4) from Tulgheş Group, east Carpathians (Romania): Acta Palaeontologica Romaniae, v. 5, p. 351366.Google Scholar
Olaru, L., and Apostoae, L., 2004, Arenigian chitinozoans from the Tulghes Group, Upper Formation (Tg. 4) from Balan Zone, eastern Carpathians, Romania: Acta Palaeontologica Romaniae, v. 4, p. 299314.Google Scholar
Olaru, L., Grasu, C., and Chihaia, M., 2011, Dămuc series of Hăghimaş syncline from east Carpathians, Romania. New petrographical and palynostratigraphical data: Acta Palaeontologica Romaniae, v. 7, p. 267278.Google Scholar
Paris, F., 1981, Les Chitinozoaires dans le Paléozoïque du sud-ouest de l'Europe (cadre géologique—étude systématique-biostratigraphie): Mémoires de la Société géologique et minéralogique de Bretagne, v. 26, 412 p.Google Scholar
Paris, F., 1990, The Ordovician chitinozoan biozones of the Northern Gondwana domain: Review of Palaeobotany and Palynology, v. 66, p. 181209.CrossRefGoogle Scholar
Paris, F., and Mergl, M., 1984, Arenigian chitinozoans from the Klabava Formation, Bohemia: Review of Palaeobotany and Palynology, v. 43, p. 3365.CrossRefGoogle Scholar
Paris, F., Grahn, Y., Nestor, V., and Lakova, I., 1999, A revised chitinozoan classification: Journal of Paleontology, v. 73, p. 549570.CrossRefGoogle Scholar
Paris, F., Achab, A., Asselin, E., Chen, X.H., Grahn, Y., Nõlvak, J., Obut, O., Samuelsson, J., Sennikov, N., and Vecoli, M. 2004. Chitinozoans, in Webby, B., Droser, M., Paris, F., and Percival, I. eds., The great Ordovician Biodiversification Event: Columbia University Press, p. 294311.CrossRefGoogle Scholar
Paris, F., Miller, M.A., and Zalasiewicz, J., 2015a, Early Silurian chitinozoans from the Qusaiba type area, north central Saudi Arabia: Review of Palaeobotany and Palynology, v. 212, p. 127186.CrossRefGoogle Scholar
Paris, F., Verniers, J., Miller, M.A., Melvin, J., and Wellman, C.H., 2015b, Late Ordovician–earliest Silurian chitinozoans from the Qusaiba-1 core hole (north central Saudi Arabia) and their relation to the Hirnantian glaciation: Review of Palaeobotany and Palynology, v. 212, p. 6084.CrossRefGoogle Scholar
R Core Team, 2016, R: A language and environment for statistical computing: Vienna, Austria, R Foundation for Statistical Computing. http://www.R-project.org/.Google Scholar
Scotese, C.R., 2016, PALEOMAP PaleoAtlas for GPlates and the PaleoData Plotter Program, PALEOMAP Project. https://www.earthbyte.org/paleomap-paleoatlas-for-gplates/.CrossRefGoogle Scholar
Steemans, P., Le Hérissé, A., Melvin, J., Miller, M.A., Paris, F., Verniers, J., and Wellman, C.H., 2009, Origin and radiation of the earliest vascular land plants: Science, v. 324, p. 353. https://doi.org/10.1126/science.1169659.CrossRefGoogle ScholarPubMed
Vandenbroucke, T.R.A., 2004, Chitinozoan biostratigraphy of the Upper Ordovician Fågelsång GSSP, Scania, southern Sweden: Review of Palaeobotany and Palynology, v. 130, p. 217239.CrossRefGoogle Scholar
Vandenbroucke, T.R.A., Armstrong, H.A., Williams, M., Paris, F., Zalasiewicz, J.A., Sabbe, K., Nõlvak, J., Challands, T.J., Verniers, J., and Servais, T., 2010, Polar front shift and atmospheric CO2 during the glacial maximum of the Early Paleozoic Icehouse: Proceedings of the National Academy of Sciences, v. 107, p. 1498314986.CrossRefGoogle ScholarPubMed
Vandenbroucke, T.R.A., Emsbo, P., Munnecke, A., Nuns, N., Duponchel, L., Lepot, K., Quijada, M., Paris, F., Servais, T., and Kiessling, W., 2015, Metal-induced malformations in early Palaeozoic plankton are harbingers of mass extinction: Nature Communications, v. 6, p. 7966. https://doi.org/10.1038/ncomms8966.CrossRefGoogle ScholarPubMed
Verniers, J., Nestor, V., Paris, F., Dufka, P., Sutherland, S., and Van Grootel, G., 1995, A global Chitinozoa biozonation for the Silurian: Geological Magazine, v. 132, p. 651666.CrossRefGoogle Scholar
Wang, W.H., Feng, H.Z., Vandenbroucke, T.R.A., Li, L.X., and Verniers, J., 2013, Chitinozoans from the Tremadocian graptolite shales of the Jiangnan Slope in South China: Review of Palaeobotany and Palynology, v. 198, p. 4561.CrossRefGoogle Scholar
Zhen, Y.Y., 1985, The biostratigraphical significance of the chitinozoans from the Meitan Formation at Honghuayuan, northern Guizhou: Scientia Geologica Sinica, v. 20, p. 375–380. [in Chinese with English abstract]Google Scholar