Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T08:30:24.809Z Has data issue: false hasContentIssue false

A rare onychophoran-like lobopodian from the Lower Cambrian Chengjiang Lagerstätte, southwestern China, and its phylogenetic implications

Published online by Cambridge University Press:  14 July 2015

Qiang Ou
Affiliation:
1Early Life Evolution Laboratory, School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, P. R. China,
Jianni Liu
Affiliation:
2Early Life Institute and Department of Geology, Northwest University, Xi'an 710069, P. R. China,
Degan Shu
Affiliation:
1Early Life Evolution Laboratory, School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, P. R. China, 2Early Life Institute and Department of Geology, Northwest University, Xi'an 710069, P. R. China,
Jian Han
Affiliation:
2Early Life Institute and Department of Geology, Northwest University, Xi'an 710069, P. R. China,
Zhifei Zhang
Affiliation:
2Early Life Institute and Department of Geology, Northwest University, Xi'an 710069, P. R. China,
Xiaoqiao Wan
Affiliation:
1Early Life Evolution Laboratory, School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, P. R. China,
Qianping Lei
Affiliation:
1Early Life Evolution Laboratory, School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, P. R. China,

Abstract

Lobopodians, which diversified and flourished in the Cambrian seas, have long drawn much attention in that not only their extant close relatives, onychophorans and tardigrades, but euarthropods (Chelicerata, Myriapoda, Crustacea, and Hexapoda) may have been deeply rooted in stem-group lobopodians. Antennacanthopodia gracilis new genus and species is described and interpreted here as an “unarmoured” lobopodian from the Chengjiang fossil Lagerstätte (Early Cambrian, —520 Ma), Yunnan, southwestern China. This animal shares with other known Cambrian lobopodians such plesiomorphies (primitive characters) as onychophoran-like overall appearance; a metamerically segmented body covered by slightly sclerotized cuticle, and paired, unjointed lobopodal legs. Antennacanthopodia is also featured by a pair of frontal antennae, potential ocellus-like lateral visual organs, second antennae, a straight, voluminous midgut, diminutive spines arrayed on the leg and the trunk, well-developed leg musculature, highly sclerotized terminal leg pads, and presumptively a pair of posteriormost appendicules. This new taxon, with innovative characters (autapomorphies), furthers our understanding of early lobopodian diversification. Antennacanthopodia is considered closely allied to extant Onychophora based on considerable anatomical similarities. Taken together its “two-segmented” cephalization and appendage-bearing “ocular segment”, this new form may shed some new light on the arthropod groundplan.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguinaldo, A. M. A., Turbeville, J. M., Linford, L. S., Rivera, M. C., Garey, J. R., Raff, R. A., and Lake, J. A. 1997. Evidence for a clade of nematodes, arthropods and other moulting animals. Nature, 387:489493.Google Scholar
Babcock, L. E., Zhang, W. T., and Leslie, S. A. 2001. The Chengjiang biota: record of the Early Cambrian diversification of life and clues to exceptional preservation of fossils. GSA Today, 11:49.2.0.CO;2>CrossRefGoogle Scholar
Ballard, J. W. O., Olsen, G. J., Faith, D. P., Odgers, W. A., Rowell, D. M., and Atkinson, P. W. 1992. Evidence from 12S Ribosomal RNA sequences that Onychophorans are modified arthropods. Science, 258:13451348.CrossRefGoogle ScholarPubMed
Bergström, J. and Hou, X. G. 2001. Cambrian Onychophora or xenusians. Zoologischer Anzeiger, 240:237245.CrossRefGoogle Scholar
Brusca, R. C. and Brusca, G. J. 2003. Invertebrates (Second edition). Sinauer Associates, Sunderland, Massachusetts, 880 p.Google Scholar
Budd, G. E. 1993. A Cambrian gilled lobopod from Greenland. Nature, 364:709711.Google Scholar
Budd, G. E. 1997. Stem group arthropods from the Lower Cambrian Sirius Passet fauna of North Greenland, p. 125138. In Fortey, R. A. and Thomas, R. H. (eds.), Arthropod Relationships. Chapman & Hall, London.Google Scholar
Budd, G. E. and Peel, J. S. 1998. A new xenusiid lobopod from the Early Cambrian Sirius Passet fauna of North Greenland. Palaeontology, 41:12011213.Google Scholar
Budd, G. E. 1999. The morphology and phylogenetic significance of Kerygmachela kierkegaardi Budd (Buen Formation, Lower Cambrian, N. Greenland). Transactions of the Royal Society of Edinburgh: Earth Sciences, 89:249290.Google Scholar
Budd, G. E. 2002. A palaeontological solution to the arthropod head problem. Nature, 417:271275.CrossRefGoogle Scholar
Budd, G. E. and Telford, M. J. 2009. The origin and evolution of arthropods. Nature, 457:812817.Google Scholar
Chen, J. Y., Hou, X. G., and Lu, H. Z. 1989. Early Cambrian netted scale-bearing worm-like sea animal. Acta Palaeontologica Sinica, 28:216. (In Chinese).Google Scholar
Chen, J. Y., Zhou, G. Q., and Ramsköld, L. 1995a. The Cambrian Lobopodian Microdictyon sinicum. Bulletin of National Museum of Natural Science, Number 5, 25 p.Google Scholar
Chen, J. Y., Zhou, G. Q., and Ramsköld, L. 1995b. A new Early Cambrian onychophoran-like animal, Paucipodia gen. nov., from the Chengjiang fauna, China. Transactions of the Royal Society of Edinburgh: Earth Sciences, 85:275282.Google Scholar
Chen, J. Y., Edgecombe, G. D., Ramsköld, L., and Zhou, G. Q. 1995c. Head segmentation in Early Cambrian Fuxianhuia: implications for arthropod evolution. Science, 268:13391343.CrossRefGoogle ScholarPubMed
Collins, D. 1986. Paradise revisited. Rotunda, 19:3039.Google Scholar
Conway Morris, S. 1977. A new metazoan from the Cambrian Burgess Shale of British Columbia. Palaeontology, 20:623640.Google Scholar
Conway Morris, S. and Robison, R. A. 1988. More soft-bodied animals and algae from the Middle Cambrian of Utah and British Columbia. The University of Kansas Paleontological Contributions, 122:148.Google Scholar
Delle Cave, L. and Simonetta, A. M. 1975. Notes on the morphology and taxonomic position of Aysheaia (Onychophora?) and of Skania (undetermined phylum). Monitore Zoologica Italica, 9:6781.Google Scholar
Dunn, C. W., Hejnol, A., Matus, D. Q., Pang, K., Browne, W. E., Smith, S. A., Seaver, E., Rouse, G. W., Obst, M., Edgecombe, G. D., et al. 2008. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature, 452:745749.Google Scholar
Dzik, J. and Krumbiegel, G. 1989. The oldest “onychophoran” Xenusion: a link connecting phyla? Lethaia, 22:169181.CrossRefGoogle Scholar
Edgecombe, G. D. 2009. Palaeontological and molecular evidence linking arthropods, onychophorans, and other Ecdysozoa. Evolution: Education and Outreach, 2:178190.Google Scholar
Edgecombe, G. D. 2010. Arthropod phylogeny: an overview from the perspectives of morphology, molecular data and the fossil record. Arthropod Structure & Development, 39:7487.CrossRefGoogle ScholarPubMed
Engel, M. S. and Grimaldi, D. A. 2002. The first Mesozoic Zoraptera (Insecta). American Museum Novitates, 3362:120.2.0.CO;2>CrossRefGoogle Scholar
Eriksson, B. J. and Budd, G. E. 2001. Onychophoran cephalic nerves and their bearing on our understanding of head segmentation and stem-group evolution of Arthropoda. Arthropod Structure & Development, 29:197209.Google Scholar
Eriksson, B. J., Tait, N. N., and Budd, G. E. 2003. Head development in the onychophoran Euperipatoides kanangrensis with particular reference to the central nervous system. Journal of Morphology, 255:123.CrossRefGoogle ScholarPubMed
Gabbott, S. E., Hou, X. G., Norry, M. J., and Siveter, D. J. 2004. Preservation of Early Cambrian animals of the Chengjiang biota. Geology, 32:901904.Google Scholar
Grimaldi, D. A., Engel, M. S., and Nascimbene, P. C. 2002. Fossiliferous Cretaceous amber from Myanmar (Burma): its rediscovery, biotic diversity, and paleontological significance. American Museum Novitates, 3361:171.Google Scholar
Hou, X. G. and Chen, J. Y. 1989. Early Cambrian arthropod-annelid intermediate sea animal, Luolishania gen. nov. from Chengjiang, Yunnan. Acta Palaeontologica Sinica, 28:207213. (In Chinese).Google Scholar
Hou, X. G., Ramsköld, L., and Bergström, J. 1991. Composition and preservation of the Chengjiang fauna—a Lower Cambrian soft-bodied biota. Zoologics Scripts, 20:395411.Google Scholar
Hou, X. G. and Bergström, J. 1995. Cambrian lobopodians—ancestors of extant onychophorans? Zoological Journal of the Linnaean Society, 114:319.Google Scholar
Hou, X. G., Ma, X. Y., Zhao, J., and Bergström, J. 2004. The lobopodian Paucipodia inermis from the Lower Cambrian Chengjiang fauna, Yunnan, China. Lethaia, 37:235244.CrossRefGoogle Scholar
Hutchinson, G. E. 1930. Restudy of some Burgess Shale fossils. Proceedings of the United States National Museum, 78:111.Google Scholar
Liu, J. N., Shu, D. G., Han, J., and Zhang, Z. F. 2004. A rare lobopod with well-preserved eyes from Chengjiang Lagerstätte and its implications for origin of arthropods. Chinese Science Bulletin, 49:10631071.CrossRefGoogle Scholar
Liu, J. N., Shu, D. G., Han, J., Zhang, Z. F., and Zhang, X. L. 2006. A large xenusiid lobopod with complex appendages from the Chengjiang Lagerstätte (Lower Cambrian, China). Acta Palaeontologica Polonica, 51:215222.Google Scholar
Liu, J. N., Shu, D. G., Han, J., Zhang, Z. F., and Zhang, X. L. 2007. Morpho-anatomy of the lobopod Magadictyon cf. haikouensis from the Early Cambrian Chengjiang Lagerstätte, South China. Acta Zoologica, 88:279288.CrossRefGoogle Scholar
Liu, J. N., Shu, D. G., Han, J., Zhang, Z. F., and Zhang, X. L. 2008. The lobopod Onychodictyon from the Lower Cambrian Chengjiang Lagerstätte revisited. Acta Palaeontologica Polonica, 53:285292.CrossRefGoogle Scholar
Liu, J. N., Steiner, M., Dunlop, J. A., Keupp, H., Shu, D. G., Ou, Q., Han, J., Zhang, Z. F., and Zhang, X. L. 2011. An armoured Cambrian lobopodian from China with arthropod-like appendages. Nature, 470:526530.Google Scholar
Luo, H. L., Hu, S. X., Chen, L. Z., Zhang, S. S., and Tao, Y. H. 1999. Early Cambrian Chengjiang Fauna from Kunming Region, China. Yunnan Science Technology Press, Kunming, 129 p. (In Chinese).Google Scholar
Ma, X. Y., Hou, X. G., and Bergström, J. 2009. Morphology of Luolishania longicruris (Lower Cambrian, Chengjiang Lagerstätte, SW China) and the phylogenetic relationships within lobopodians. Arthropod Structure & Development, 38:271291.CrossRefGoogle ScholarPubMed
Maas, A., Mayer, G., Kristensen, R. M., and Waloszek, D. 2007. A Cambrian micro-lobopodian and the evolution of arthropod locomotion and reproduction. Chinese Science Bulletin, 52:33853392.CrossRefGoogle Scholar
Mayer, G. and Koch, M. 2005. Ultrastructure and fate of the nephridial anlagen in the antennal segment of Epiperipatus biolleyi (Onychophora, Peripatidae)—evidence for the onychophoran antennae being modified legs. Arthropod Structure & Development, 34:471480.Google Scholar
Mayer, G. 2006. Structure and development of onychophoran eyes: what is the ancestral visual organ in arthropods? Arthropod Structure & Development, 35:231245.Google Scholar
Mayer, G. and Whitington, P. M. 2009. Velvet worm development links myriapods with chelicerates. Proceedings of the Royal Society B: Biological Sciences, 276:35713579.CrossRefGoogle ScholarPubMed
Mayer, G., Whitington, P. M., Sunnucks, P., and Pflüger, H. J. 2010. A revision of brain composition in Onychophora (velvet worms) suggests that the tritocerebrum evolved in arthropods. BMC Evolutionary Biology, 10:255.Google Scholar
Müller, W. A. 1996. Developmental Biology. Springer-Verlag, New York, 382 p.Google ScholarPubMed
Ou, Q., Shu, D. G., Han, J., Zhang, X. L., Zhang, Z. F., and Liu, J. N. 2009. A juvenile redlichiid trilobite caught on the move: evidence from the Cambrian (Series 2) Chengjiang Lagerstätte, southwestern China. Palaios, 24:473477.CrossRefGoogle Scholar
Poinar, G. O. Jr. 1996. Fossil velvet worms in Baltic and Dominican amber: onychophoran evolution and biogeography. Science, 273:13701371.CrossRefGoogle Scholar
Poinar, G. O. Jr. 2000. Fossil onychophorans from Dominican and Baltic amber: Tertiapatus dominicanus n. gen. n. sp. (Tertiapatidae n. fam.) and Succinipatopsis balticus n. gen., n. sp. (Succinipatopsidae n. fam.) with a proposed classification of the subphylum Onychophora. Invertebrate Biology, 119:104109.Google Scholar
Pompeckj, J. F. 1927. Ein neues Zeugnis uralten Lebens. Paläontologische Zeitschrift, 9:287313. (In German).Google Scholar
Ramsköld, L. and Chen, J. Y. 1998. Cambrian lobopodians: morphology and phylogeny, p. 107150. In Edgecombe, G. D. (ed.), Arthropod Fossils and Phylogeny. Columbia University Press, New York.Google Scholar
Ramsköld, L. and Hou, X. G. 1991. New Early Cambrian animal and onychophoran affinities of enigmatic metazoans. Nature, 351:225228.CrossRefGoogle Scholar
Ramsköld, L. 1992. Homologies in Cambrian Onychophora. Lethaia, 25:443460.Google Scholar
Robison, R. A. 1985. Affinities of Aysheaia (Onychophora), with description of a new Cambrian species. Journal of Paleontology, 59:226235.Google Scholar
Schoenemann, B., Liu, J. N., Shu, D. G., Han, J., and Zhang, Z. F. 2009. A miniscule optimized visual system in the Lower Cambrian. Lethaia, 42:265273.CrossRefGoogle Scholar
Scholtz, G. and Edgecombe, G. D. 2006. The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Development, Genes and Evolution, 216:395415.Google Scholar
Shu, D. G., Conway Morris, S., Han, J., Chen, L., Zhang, X. L., Zhang, Z. F., Liu, H. Q., Li, Y., and Liu, J. N. 2001. Primitive deuterostomes from the Chengjiang Lagerstätte (Lower Cambrian, China). Nature, 414:419424.Google Scholar
Shu, D. G., Luo, H. L., Conway Morris, S., Zhang, X. L., Hu, S. X., Chen, L., Han, J., Zhu, M., Li, Y., and Chen, L. Z. 1999. Lower Cambrian vertebrates from South China. Nature, 402:4246.Google Scholar
Snodgrass, R. E. 1938. Evolution of the Annelida, Onychophora, and Arthopoda. Smithsonian Miscellaneous Collections, 97:1159.Google Scholar
Strausfeld, N. J., Strausfeld, C. M., Loesel, R., Rowell, D., and Stowe, S. 2006. Arthropod phylogeny: onychophoran brain organization suggests an archaic relationship with a chelicerate stem lineage. Proceedings of the Royal Society B: Biological Sciences, 273(1596):18571866.Google Scholar
Thompson, I. and Jones, D. S. 1980. A possible onychophoran from the Middle Pennsylvanian Mazon Creek beds of northern Illinois. Journal of Paleontology, 54:588596.Google Scholar
von Bitter, P. H., Purnell, M. A., Tetreault, D. K., and Stott, C. A. 2007. Eramosa Lagerstätte—exceptionally preserved soft-bodied biotas with shallow-marine shelly and bioturbating organisms (Silurian, Ontario, Canada). Geology, 35:879882.Google Scholar
Walcott, C. D. 1911. Middle Cambrian annelids. Cambrian geology and paleontology II: Smithsonian Miscellaneous Collections, 57:109144.Google Scholar
Waloszek, D., Chen, J. Y., Maas, A., and Wang, X. Q. 2005. Early Cambrian arthropods—new insights into arthropod head and structural evolution. Arthropod Structure & Development, 34:189205.CrossRefGoogle Scholar
Waloszek, D., Maas, A., Chen, J. Y., and Stein, M. 2007. Evolution of cephalic feeding structures and the phylogeny of Arthropoda. Palaeogeography, Palaeoclimatology, Palaeoecology, 254:273287.CrossRefGoogle Scholar
Whittington, H. B. 1978. The lobopod animal Aysheaia pedunculata Walcott, Middle Cambrian, Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society B: Biological Sciences, 284:165197.Google Scholar
Whittington, H. B. 1985. The Burgess Shale. Yale University Press, New Haven and London, 151 p.Google Scholar
Whittle, R. J., Gabbott, S. E., Aldridge, R. J., and Theron, J. 2009. An Ordovician lobopodian from the Soom Shale Lagerstätte, South Africa. Palaeontology, 52:561567.CrossRefGoogle Scholar
Xiao, S. H. 2004. An arthropod sphinx. Chinese Science Bulletin, 49:983984.CrossRefGoogle Scholar
Zhang, X. L., Shu, D. G., Li, Y., and Han, J. 2001. New sites of Chengjiang fossils: crucial windows on the Cambrian explosion. Journal of the Geological Society, 158:211218.CrossRefGoogle Scholar
Zhang, X. L., Liu, W., and Zhao, Y. L. 2008. Cambrian Burgess Shale-type Lagerstätten in South China: distribution and significance. Gondwana Research, 14:255262.Google Scholar
Zhang, Z. F., Li, G. X., Emig, C. C., Han, J., Holmer, L. E., and Shu, D. G. 2009. Architecture and function of the lophophore in the problematic brachiopod Heliomedusa orienta (Early Cambrian, South China). Geobios, 42:649661.CrossRefGoogle Scholar
Zhou, M. Z., Luo, T. Y., Li, Z. X., Zhao, H., Long, H. S., and Yang, Y. 2008. SHRIMP U-Pb zircon age of tuff at the bottom of the Lower Cambrian Niutitang Formation, Zunyi, South China. Chinese Science Bulletin, 53:576583.CrossRefGoogle Scholar