Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T03:36:24.610Z Has data issue: false hasContentIssue false

Phycosiphon incertum revisited: Anconichnus horizontalis is its junior subjective synonym

Published online by Cambridge University Press:  20 May 2016

Andreas Wetzel
Affiliation:
Geologisch-Paläontologisches Institut der Universität, Bernoullistrasse 32, CH-4056 Basel, Switzerland
Richard G. Bromley
Affiliation:
Geologisk Centraiinstitut, øster Voldgade 10, DK-1350 Copenhagen K, Denmark

Abstract

Comparisons between Phycosiphon incertum Fischer-Ooster (1858) and Anconichnus horizontalis Kern (1978) show that these two monotypic ichnogenera do not differ significantly in geometry, size, sediment fill, and environmental occurrence. Therefore, taxonomic priority has to be given to Phycosiphon and Anconichnus becomes a subjective junior synonym. The trace fossil is a small, highly lobed spreite structure produced by a zoned backfill consisting of a pale mantle and dark core. In a few cases, a meniscate structure is visible in the core. The spreite sediment is an extension of the mantle material; it commonly is poorly visible. The spreite-producing behavior may be locally interrupted, leaving a single tube of backfill. The spatial arrangement of the trace fossils seems to depend on the host sediment; in muddy and homogeneous material the lobes tend to be oriented randomly, including vertically, whereas in laminated sand and silty sediments they tend to lie parallel to bedding. This latter orientation is exaggerated by compaction. Textural differences between host sediment and spreite or mantle may be subtle and not always evident. Observations in modern sediments are in agreement with the type material of both ichnogenera.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bockelie, J. F. 1991. Ichnofabric mapping and interpretation of Jurassic reservoir rocks of the Norwegian North Sea. Palaios, 6:206215.Google Scholar
Bradley, T. L., and Pemberton, S. G. 1992. Examples of ichnofossil assemblages in the Lower Cretaceous Wabiskaw Member and the Clearwater Formation of the Marten Hills Gas Field, north-central Alberta, Canada, p. 383399. In Pemberton, S. G. (ed.), Applications of Ichnology to Petroleum Exploration. Society of Economic Paleontologists and Mineralogists, Core Workshop, 17.Google Scholar
Bromley, R. G. 1990. Trace Fossils: Biology and Taphonomy. Unwin Hyman, London, 280 p.Google Scholar
Chamberlain, C. K. 1971. Morphology and ethology of trace fossils from the Ouachita Mountains, southeast Oklahoma. Journal of Paleontology, 45:212246.Google Scholar
Chamberlain, C. K. 1978. Recognition of trace fossils in cores, p. 133183. In Basan, P. B. (ed.), Trace Fossil Concepts. Society of Economic Paleontologists and Mineralogists, Short Course Notes, 5.Google Scholar
Clifton, H. E., and Thompson, J. K. 1978. Macaronichnus segregatis: a feeding structure of shallow marine polychaetes. Journal of Sedimentary Petrology, 48:12931301.Google Scholar
D'Alessandro, A., Ekdale, A. A., and Sonnino, M. 1986. Sedimentologic significance of turbidite ichnofacies in the Saraceno Formation (Eocene), southern Italy. Journal of Sedimentary Petrology, 56:294306.Google Scholar
Ekdale, A. A., and Bromley, R. G. 1984. Sedimentology and ichnology of the Cretaceous–Tertiary boundary in Denmark: implications for the causes of the terminal Cretaceous extinction. Journal of Sedimentary Petrology, 54:681703.Google Scholar
Ekdale, A. A., and Bromley, R. G. 1991. Analysis of composite ichnofabrics: an example in uppermost Cretaceous chalk of Denmark. Palaios, 6:232249.Google Scholar
Ekdale, A. A., and Lewis, D. W. 1991. Trace fossils and paleoenvironmental control of ichnofacies in a late Quaternary gravel and loess fan delta complex, New Zealand. Palaeogeography, Palaeoclimatology, Palaeoecology, 81:253279.CrossRefGoogle Scholar
Ekdale, A. A., and Mason, T. R. 1988. Characteristic trace-fossil associations in oxygen-poor sedimentary environments. Geology, 16:720723.Google Scholar
Exon, N. F., Haake, F.-W., Hartmann, M., Kögler, M. F. C., Müller, P. J., and Whiticar, M. J. 1981. Morphology, water characteristics and sedimentation in the silled Sulu Sea, southeast Asia. Marine Geology, 39:165195.CrossRefGoogle Scholar
Fischer-Ooster, C. von. 1858. Die fossilen Fucoiden der Schweizer Alpen, nebst Erörterung über deren geologisches Alter. Huber und Companie, Bern, 74 p.Google Scholar
Fischer, P., and Paulus, B. 1969. Spurenfossilien aus den oberen Nohn-Schichten der Blanckenheimer Mulde (Eifelium, Eifel). Senckenbergiana lethaea, 50:81101.Google Scholar
Fu, S. 1991. Funktion, Verhalten, und Einteilung fucoider und lophocteniider Lebensspuren. Courier Forschungs-Institut Senckenberg, 135, 79 p.Google Scholar
Goldring, R., Pollard, J. E., and Taylor, A. M. 1991. Anconichnus horizontalis: a pervasive ichnofabric-forming trace fossil in post-Paleozoic offshore siliciclastic facies. Palaios, 6:250263.Google Scholar
Häntzschel, W. 1962. Trace fossils and problematica, p. W177W249. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part W, Miscellanea. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Häntzschel, W. 1975. Trace Fossils and Problematica. In Teichert, C. (ed.), Treatise on Invertebrate Paleontology, Part W, Miscellanea. Supplement 1. Geological Society of America and University of Kansas Press, Lawrence, 269 p.Google Scholar
Kern, J. P. 1978. Paleoenvironment of new trace fossils from the Eocene Mission Valley Formation, California. Journal of Paleontology, 52:186194.Google Scholar
MacEachern, J. A., Bechtel, D. J., and Pemberton, S. G. 1992. Ichnology and sedimentology of transgressive deposits, transgressive-related deposits and transgressive system tracts in the Viking Formation of Alberta, p. 251290. In Pemberton, S. G. (ed.), Applications of Ichnology to Petroleum Exploration. Society of Economic Paleontologists and Mineralogists, Core Workshop, 17.Google Scholar
Pattinson, S. A. J. 1992. Recognition and interpretation of estuarine mudstones (central basin mudstones) in the tripartite valley-fill deposits of the Viking Formation, central Alberta, p. 223249. In Pemberton, S. G. (ed.), Applications of Ichnology to Petroleum Exploration. Society of Economic Paleontologists and Mineralogists, Core Workshop, 17.Google Scholar
Pemberton, S. G., MacEachern, J. A., and Ranger, M. J. 1992. Ichnology and event stratigraphy: the use of trace fossils in recognizing tempestites, p. 85117. In Pemberton, S. G. (ed.), Applications of Ichnology to Petroleum Exploration. Society of Economic Paleontologists and Mineralogists, Core Workshop, 17.CrossRefGoogle Scholar
Pemberton, S. G., Reinson, G. E., and MacEachern, J. A. 1992. Comparative ichnological analysis of late Albian estuarine valley-fill and shelfshorefawce deposits, Crystal Viking Field, Alberta, p. 291317. In Pemberton, S. G. (ed.), Applications of Ichnology to Petroleum Exploration. Society of Economic Paleontologists and Mineralogists, Core Workshop, 17.CrossRefGoogle Scholar
Pemberton, S. G., van Wagoner, J. G., and Wach, G. D. 1992. Ichnofacies of a wave dominated shoreline, p. 339382. In Pemberton, S. G. (ed.), Applications of Ichnology to Petroleum Exploration. Society of Economic Paleontologists and Mineralogists, Core Workshop, 17.CrossRefGoogle Scholar
Pfeiffer, H. 1968. Die Spurenfossilien des Kulms (Dinant) und des Devons der Frankenwälder Querzone (Thüringen). Jahrbuch für Geologie, 2(1966):651717.Google Scholar
Raychaudhuri, I., Brekke, H. G., Pemberton, S. G., and MacEachern, J. A. 1992. Depositional facies and trace fossils of a low wave-energy shoreface succession, Albian Viking Formation, Chigwell Field, Alberta, p. 319337. In Pemberton, S. G. (ed.), Applications of Ichnology to Petroleum Exploration. Society of Economic Paleontologists and Mineralogists, Core Workshop, 17.Google Scholar
Raychaudhuri, I., and Pemberton, S. G. 1992. Ichnologic and sedimentologic characteristics of open marine to storm-dominated restricted marine settings within the Viking/Bow Island Formations, south-central Alberta, p. 119139. In Pemberton, S. G. (ed.), Applications of Ichnology to Petroleum Exploration. Society of Economic Paleontologists and Mineralogists, Core Workshop, 17.Google Scholar
Seilacher, A. 1962. Paleontological studies on turbidite sedimentation and erosion. Journal of Geology, 70:227234.Google Scholar
Stuijvenberg, J. van. 1979. Geology of the Gurnigel area (Prealps, Switzerland). Beiträge zur Geologischen Karte der Schweiz, No. 151, 111 p. Bern(Schweizerische Geologische Kommission).Google Scholar
Werner, F. 1967. Röntgen-Radiographie zur Untersuchung von Sedimentstrukturen. Umschau, 16:532.Google Scholar
Wetzel, A. 1983. Biogenic structures in modern slope to deep-sea sediments in the Sulu Sea Basin (Philippines). Palaeogeography, Palaeoclimatology, Palaeoecology, 42:285304.CrossRefGoogle Scholar
Wetzel, A. 1984. Bioturbation in deep-sea fine-grained sediments: influence of sediment texture, turbidite frequency and rates of environmental change, 595608. In Stow, D. A. V. and Piper, D. J. W. (eds.), Fine-Grained Sediments: Deep-Water Processes and Facies. Geological Society of London, Special Publications, 15.Google Scholar
Wetzel, A., and Wijayananda, N. P. 1990. Biogenic sedimentary structures in outer Bengal Fan deposits drilled during Leg 116, p. 1524. In Cochran, J. R., Stow, D. A. V., et al. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results 116. Ocean Drilling Program, College Station, Texas.Google Scholar