Hostname: page-component-54dcc4c588-r5qjk Total loading time: 0 Render date: 2025-09-26T16:57:02.980Z Has data issue: false hasContentIssue false

New species of noncalcified dasycladalean and bryopsidalean macroalgae and a new occurrence of Thalassocystis striata (Chlorophyta) from the Silurian (Llandoverian) of Michigan

Published online by Cambridge University Press:  20 August 2025

Steven T. LoDuca*
Affiliation:
Department of Geography and Geology, https://ror.org/02ehshm78 Eastern Michigan University , Ypsilanti, Michigan 48197, USA
*
Corresponding author: Steven T. LoDuca; Email: sloduca@emich.edu

Abstract

The Llandoverian (Telychian) Schoolcraft Formation of Schoolcraft County in the Upper Peninsula of Michigan includes several intervals of exceptional preservation marked by abundant specimens of the noncalcified macroalga Thalassocystis striata Taggart and Parker, 1976. Here, two new noncalcified macroalgal species are described from one of these algal-Lagerstätten intervals. The monopodial thallus of Archaeobatophora gulliverensis new species resembles that of the living dasycladalean green alga Batophora Agardh, 1854 and consists of a cylindrical main axis bearing whorls of branched laterals. It is the second species to be assigned to Archaeobatophora Nitecki, 1976, the type species of which is known only from the Upper Ordovician of neighboring Delta County and the diagnosis of which is emended herein. The thallus of Earltonella swinehartii new species consists of a horizontal stolon that bears a series of upright pinnate fronds. This taxon broadly resembles the living bryopsidalean green alga Caulerpa Lamouroux, 1809 and is the second species to be assigned to Earltonella LoDuca in LoDuca et al., 2023, a genus otherwise known only from approximately age-equivalent strata in the Lake Timiskaming area of Ontario. Additionally, a new Thalassocystis striata occurrence is reported from the Schoolcraft Formation in neighboring Mackinac County, extending eastward the geographic range of this Codium-like bryopsidalean taxon within the Michigan Basin. Viewed in broader terms, the two new species show complex thallus morphologies consistent with a previously documented large-scale morphological pattern in the early Paleozoic evolutionary history of macroalgae and contribute to an emerging understanding of major early Paleozoic radiations of both dasycladalean and bryopsidalean algae that produced, by the mid-Silurian, diverse floras of siphonous green macroalgae broadly similar to those that thrive today in Florida Bay and the Bahama Banks.

Information

Type
Articles
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Handling Editor: Paula Noble

References

Agardh, C.A., 1828, Species Algarum rite Cognitae, cum Synonymis, Differentiis Specificis et Descriptionibus Succinctis: Voluminis Secundi, Sectio Prior: Greifswald, Germany, Ernst Mauritius, 189 p.Google Scholar
Agardh, J.G., 1854, Nya algformer: Öfversigt af Kongl: Vetenskaps-Academiens Förhandlingar, Stockholm, v. 11, p. 107111.Google Scholar
Berger, S., and Kaever, M.J., 1992, Dasycladales: an Illustrated Monograph of a Fascinating Algal Order: Stuttgart, Georg Thieme, 247 p.Google Scholar
Dawes, C.J., and Mathieson, A.C., 2008, The Seaweeds of Florida: Gainesville, University Press of Florida, 591 p.Google Scholar
Ehlers, G.M., 1973, Stratigraphy of the Niagaran Series of the northern peninsula of Michigan: University of Michigan Museum of Paleontology, Papers on Paleontology, v. 3, p. 1200.Google Scholar
Elliott, G.F., 1971, A new fossil alga from the English Silurian: Palaeontology, v. 14, p. 637641.Google Scholar
Granier, B., Dias-Brito, D., Bucur, I.I., and Tibana, P., 2012, Brasiliporella, a new mid-Cretaceous dasycladacean genus: the earliest record of the tribe Batophoreae: Facies, vol. 59, p. 207220, https://doi.org/10.1007/s10347-012-0312-6CrossRefGoogle Scholar
Hall, J., 1865, Figures and Descriptions of Canadian Organic Remains; Decade 2, Graptolites of the Quebec Group: Montreal, Dawson Brothers, 151 p.10.4095/222572CrossRefGoogle Scholar
Harvey, W.H., 1858, Contributions to a history of the marine algae of North America, Part 3, Chlorospermeae: Smithsonian Contributions to Knowledge, v. 10, p. 1140.Google Scholar
Howe, M.A., 1905, Phycological studies, 2, new Chlorophyceae, new Rhodophyceae and miscellaneous notes: Bulletin of the Torrey Botanical Club, v. 32, p. 563586.CrossRefGoogle Scholar
Johnson, J.H., 1961, Review of Ordovician algae: Quarterly of the Colorado School of Mines, v. 56, p. 1101.Google Scholar
Kröger, B., Tinn, O., Rikkinen, J., Jolis, E.M., Butcher, A.R., Toom, U., and Hints, O., 2023, Noncalcified dasyclad algae from the Vasalemma Formation, late Sandbian (Late Ordovician) of Estonia: Review of Palaeobotany and Palynology, v. 318, n. 104970, https://doi.org/10.1016/j.revpalbo.2023.104970CrossRefGoogle Scholar
Lamouroux, J.V.F., 1809, Observations sur la physiologie des algues marines, et description de cinq nouveaux genres de cette famille: Nouveau Bulletin des Sciences de la Société Philomathique de Paris, v. 1, p. 330333.Google Scholar
Lamsdell, J.C., LoDuca, S.T., Gunderson, G.O., Meyer, R.C., and Briggs, D.E.G., 2017, A new Lagerstätte from the Late Ordovician Big Hill Formation, Upper Peninsula, Michigan: Journal of the Geological Society, v. 174, p. 1822, https://doi.org/10.1144/jgs2016-059CrossRefGoogle Scholar
Lamsdell, J.C., Gunderson, G.O., and Meyer, R.C., 2019, A common arthropod from the Late Ordovician Big Hill Lagerstätte (Michigan) reveals an unexpected ecological diversity within Chasmataspidida: BMC Evolutionary Biology, v. 19, n. 8, https://doi.org/10.1186/s12862-018-1329-4Google Scholar
LoDuca, S.T., 1995, Thallophytic-alga-dominated biotas from the Silurian Lockport Group of New York and Ontario: Northeastern Geology and Environmental Sciences, v. 17, p. 371383.Google Scholar
LoDuca, S.T., 1997, The green alga Chaetocladus (Dasycladales): Journal of Paleontology, v. 71, p. 940949.10.1017/S0022336000035873CrossRefGoogle Scholar
LoDuca, S.T., 2019, New Ordovician marine macroalgae from North America, with observations on Buthograptus, Callithamnopsis, and Chaetocladus: Journal of Paleontology, v. 93, p. 197214, https://doi.org/10.1017/jpa.2018.76CrossRefGoogle Scholar
LoDuca, S.T., 2024, Reinterpretation of Voronocladus from the Silurian of Ukraine as a bryopsidalean alga (Chlorophyta): the outlines of a major early Paleozoic macroalgal radiation begin to come into focus: Review of Palaeobotany and Palynology, v. 322, n. 105064, https://doi.org/10.1016/j.revpalbo.2024.105064CrossRefGoogle Scholar
LoDuca, S.T., and Behringer, E., 2009, Functional morphology and evolution of early Paleozoic dasycladalean algae (Chlorophyta): Paleobiology, v. 35, p. 6376, https://doi.org/10.1666/07075.1CrossRefGoogle Scholar
LoDuca, S.T., and Brett, C.E., 1997, The Medusaegraptus epibole and Ludlovian Konservat-Lagerstätten of eastern North America, in Brett, C.E., and Baird, G., eds., Paleontological Events: Stratigraphic, Ecological, and Evolutionary Implications: New York, Columbia University Press, p. 369405.Google Scholar
LoDuca, S.T., and Tetreault, D.K., 2017, Ontogeny and reproductive functional morphology of the macroalga Wiartonella nodifera n. gen. n. sp. (Dasycladales, Chlorophyta) from the Silurian Eramosa Lagerstätte of Ontario, Canada: Journal of Paleontology, v. 91, p. 111, https://doi.org/10.1017/jpa.2016.144CrossRefGoogle Scholar
LoDuca, S.T., Melchin, M.J., and Verbruggen, H., 2011, Complex noncalcified macroalgae from the Silurian of Cornwallis Island, Arctic Canada: Journal of Paleontology, v. 85. p. 111121, https://doi.org/10.1666/10-025.1CrossRefGoogle Scholar
LoDuca, S.T., Bykova, N., Wu, M., Xiao, S., and Zhao, Y., 2017, Seaweed morphology and ecology during the great animal diversification events of the early Paleozoic: a tale of two floras: Geobiology, v. 15, p. 588616, https://doi.org/10.1111/gbi.12244Google Scholar
LoDuca, S.T., Swinehart, A.L., LeRoy, M.A., Tetreault, D., and Steckenfinger, S., 2021, Codium-like taxa from the Silurian of North America: morphology, taxonomy, paleoecology, and phylogenetic affinity: Journal of Paleontology, v. 95, p. 207235, https://doi.org/10.1017/jpa.2020.85CrossRefGoogle Scholar
LoDuca, S.T., Meacher, M., Pepper, M., Brett, K., and Isotalo, P.A., 2023, Earltonella fredricksi n. gen n. sp. and Thalassocystis striata (Chlorophyta, Bryopsidales) from the Silurian (Llandoverian) of the Timiskaming outlier, Ontario, Canada: Journal of Paleontology, v. 97, p. 516532, https://doi.org/10.1017/jpa.2022.86CrossRefGoogle Scholar
Mierzejewski, P., 1986, Ultrastructure, taxonomy and affinities of some Ordovician and Silurian organic microfossils: Palaeontologica Polonica, v. 47, p. 129220.Google Scholar
Nitecki, M.H., 1976, Ordovician Batophoreae (Dasycladales) from Michigan: Fieldiana (Geology), v. 35, p. 2940.Google Scholar
Pascher, A., 1931, Systematische Übersicht über die mit Flagellaten in Zusammenhang stehenden Algenreihen und Versuch einer Einreihung dieser Algenstamme in die Stämme des Pflanzenreiches: Botanisches Centralblatt, Beiheft, v. 48, p. 317332.Google Scholar
Pia, J., 1920, Die Siphoneae verticillatae vom Karbon bis zur Kreide: Abhandlungender Zoologisch-Botanischen Gesellschaftin Wien, v. 11, p. 1263.Google Scholar
Reichenbach, H.G.L., 1828, Conspectus Regni Vegetabilis: Leipzig, Carl Cnobloch, 132 p.Google Scholar
Ruedemann, R., 1909, Some marine algae from the Trenton Limestone of New York: New York State Museum Annual Report, v. 62 (for 1908), p. 194210.Google Scholar
Ruedemann, R., 1925, Some Silurian (Ontarian) faunas of New York: New York State Museum Bulletin, v. 265, 84 p.Google Scholar
Schaffner, J.H., 1922, The classification of plants 12: Ohio Journal of Science, v. 22, p. 129139.Google Scholar
Schneider, C.A., Rasband, W.S., and Eliceiri, K.W., 2012, NIH Image to ImageJ: 25 years of image analysis: Nature Methods, vol. 9, p. 671675, https://doi.org/10.1038/nmeth.2089CrossRefGoogle ScholarPubMed
Stackhouse, J., 1797, Nereis Britannica; Continens Species Omnes Fucorum in Insulis Britannicis Crescentium: Descriptione Latine et Anglico, Necnon Iconibus ad Vivum Depictis, Fascicle 2: Bath, UK, S. Hazard, p. 3170.Google Scholar
Taggart, R.E., and Parker, L.R., 1976, A new fossil alga from the Silurian of Michigan: American Journal of Botany, v. 63, p. 13901392.10.1002/j.1537-2197.1976.tb13225.xCrossRefGoogle Scholar
Taylor, W.R., 1960, Marine Algae of the Eastern Tropical and Subtropical Coasts of the Americas: Ann Arbor, University of Michigan Press, 870 p.Google Scholar
Tinn, O., Meidla, T., Ainsaar, L., and Pani, T., 2009, Thallophytic algal flora from a new Silurian Lagerstätte: Estonian Journal of Earth Sciences, v. 58, p. 3842, https://doi.org/10.3176/earth.2009.1.04CrossRefGoogle Scholar
Whitfield, R.P., 1894, On new forms of marine algae from the Trenton Limestone, with observations on Buthograptus laxus Hall: American Museum of Natural History Bulletin, v. 6, p. 351358.Google Scholar