Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-24T08:40:21.184Z Has data issue: false hasContentIssue false

Morphologic and systematic revision of the solute Maennilia estonica (Homoiostelea, Echinodermata) from the Upper Ordovician of Estonia

Published online by Cambridge University Press:  20 May 2016

Ronald L. Parsley
Affiliation:
Department of Earth and Environmental Sciences, Tulane University, New Orleans, Louisiana 70118, USA,
Sergei V. Rozhnov
Affiliation:
Borissiak Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya 123, 117997, Moscow, Russia,
Colin D. Sumrall
Affiliation:
Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, Tennessee 37996, USA,

Abstract

Maennilia estonica Rozhnov and Jefferies was first described as a stem-chordate but restudy shows it is an unusually large homoiostelean echinoderm. Its feeding structure, an erect ambulacrum, extending exothecally from the peristomial frame plates, bears a large internal tunnel that opens directly into the body cavity. This type of feeding appendage is now recognized to be unique to homoiosteles. It bears no evidence for water vascular system impressions adjacent to its food groove. The theca has poorly developed marginal plates and a narrow rim that, in contrast to some other homoiosteles, does not extend over either lower or upper thecal face. Maennilia appears to have inhabited the deeper portions of a near-shore environment in limey muds adjacent to a linear zone of bryozoan and microbial bioherms.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrande, J, 1887. Systême Silurien du Centre de la Bohême: Classe des Echinodermes, I, Ordre des Cystidées, 7. Prague, 233 p.Google Scholar
Bassler, R. S. 1938. Pelmatozoa Palaeozoica, p. 199. InQuenstedt, W.(ed.), Fossilium Catalogus Animalia, Pt. 1, Vol. 83.Google Scholar
Billings, E. K. 1859. Crinoidea of the Lower Silurian rocks of Canada, Geological Survey of Canada, Canadian Organic Remains, decade 3, 72 p.CrossRefGoogle Scholar
Buch, C. L von. 1840. Über Sphaeroniten und einiger Getsleicher, aus welchen Crinoideen entsthen. Bericht über die zur Bekanntmachung geeigneten Verhandlungen der Königlich Preussischen Akademie der Wissenschafen zu Berlin, 1840:5660.Google Scholar
Caster, K. E. 1968. Homoiostelea, p. S581S627. InMoore, R. C.(ed.), Treatise on Invertebrate Paleontology, Pt. S. Echinodermata 1(2). Geological Society of America and University of Kansas, Lawrence.Google Scholar
Daley, P. E. J. 1995. Anatomy, locomotion and ontogeny of the solute Castericystis vali from the Middle Ordovician of Utah. Geobios, 28:585615.Google Scholar
Daley, P. E. J. 1996. The first solute which is attached as an adult: a mid-Cambrian fossil from Utah with echinoderm and chordate affinities. Zoological Journal of the Linnean Society, 117:405440.Google Scholar
Dean, J. and Smith, A. B. 1998. Palaeobiology of the primitive Ordovician pelmatozoan echinoderm Cardiocystites. Palaeontology, 41:11831194.Google Scholar
Gill, E. D. and Caster, K. E. 1960. Carpoid echinoderms from the Silurian and Devonian of Australia. Bulletins of American Paleontology, 41:771.Google Scholar
Guensburg, T. E. and Sprinkle, J. 2007. Phylogenetic implications of the Protocrinoidea: blastozoans are not ancestral to crinoids. Annales de Paleontology, 93:277290.Google Scholar
Guensburg, T. E. and Sprinkle, J. 2009. Solving the mystery of crinoid ancestry: new fossil evidence of arm origin and development. Journal of Paleontology, 83:350364.Google Scholar
Guensburg, T. E., Mooi, R., Sprinkle, J., David, B., and Lefebvre, B. 2010. Pelmatozoan arms from the mid-Cambrian of Australia: bridging the gap between brachioles and brachials? Comment: There is no bridge, 43:432440.Google Scholar
Jaekel, O. 1901. Uber Carpoideen, eine neue Classe von Pelmatozoen. Deutsche Geologisiche Gesellschaft, 52:4:661677.Google Scholar
Jaekel, O. 1918. Phylogenie und System der Pelmatozoen. Päleontologische Zeitschrift, 3:1128.Google Scholar
Kolata, D. R. 1973. Scalenocystites strimplei, a new belemnocystitid from Minnesota. Journal of Paleontology, 47:969974.Google Scholar
Kolata, D. R., Strimple, H. L., and Levorson, C. O. 1977. Revision of the carpoid family Iowacystidae. Palaeontology, 20:529557.Google Scholar
Mänil, R. 1960. Stratigraphy of Oandu (“Vasalemma”) horizon. Proceedings of Geological Institute of the Academy of Sciences of Estonian, SSR 5:89115. (In Russian)Google Scholar
Männil, R. 1966. Evolution of the Baltic basin during the Ordovician, Valgus, 200 p. Tallinn. (In Russian)Google Scholar
Miller, S. A. and Gurley, W. F. E. 1894. New Genera and species of Echinodermata. Illinois State Museum of Natural History Bulletin, 5:553.Google Scholar
Parsley, R. L. 1972. The Belemnnocystitidae: Solutan homeomorphs of the Anomalocystititidae. Journal of Paleontology, 46:3:341347.Google Scholar
Parsley, R. L. 1982. Eumorphocystis, p. 280288. InSprinkle, J.(ed.), Echinoderm Faunas from the Bromide Formation (Middle Ordovician) of Oklahoma. University of Kansas Paleontological Contributions, Monograph 1.Google Scholar
Parsley, R. L. 1997. The echinoderm classes Stylophora and Homoiostelea: Non Calcichordata, p. 225248. InWaters, J. A. and Maples, C. G.(eds.), Geobiology of echinoderms. Paleontological Society Papers, 3.Google Scholar
Parsley, R. L. and Caster, K. E. 1965. North American Soluta (Carpoidea, Echinodermata). Bulletins of American Paleontology, 49:109174.Google Scholar
Parsley, R. L. and Sumrall, C. D. 2007. New recumbent echinoderm genera from the Bois D'Arc Formation: Lower Devoian (Lochkovian) of Coal County, Oklahoma. Journal of Paleontology, 81:14861493.Google Scholar
Parsley, R. L. and Zhao, Y-L. 2006. Long stalked eocrinoids in the basal middle Cambrian Kaili Biota, Taijiang County, Guizhou Province, China. Journal of Paleontology, 80:10581071.Google Scholar
Põlma, L. 1982. Comparative lithology of carbonate deposits of the Ordovician of the North and Middle Baltica. Valgus, 164 p. (In Russian)Google Scholar
Rõõmusoks, A. 1970. Stratigraphy of the Viru and Harju Series (Ordovician) of Northern Estonia. Valgus, 343 p. (In Russian)Google Scholar
Rozhnov, S. V. and Jefferies, R. P. S. 1996. A new stem-chordate solute from the Middle Ordovician of Estonia. Geobios, 29:91109.CrossRefGoogle Scholar
Sprinkle, J. 1973. Morphology and Evolution of Blastozoan Echinoderms. Harvard University Museum of Comparative Zoology, Special Publication, 283 p.Google Scholar
Sprinkle, J. 1975. The “arms” of Caryocrinites, a rhombiferan cystoid convergent on crinoids. Journal of Paleontology, 49:10621073.Google Scholar
Sprinkle, J. 1976. Biostratigraphy and paleoecology of Cambrian echinoderms from the Rocky Mountains. Geological Studies of Brigham Young University, 23:6173.Google Scholar
Sprinkle, J. and Collins, D. 2006. New eocrinoids from the Burgess Shale, southern British Columbia, Canada, and the Spence Shale, northern Utah, U.S.A. Canadian Journal of Earth Sciences, 43:303322.Google Scholar
Sprinkle, J., Parsley, R. L., Zhao, Y-L., and Peng, J. 2011. Revision of lyracystid eocrinoids from the middle Cambrian of South China and Western Laurentia. Journal of Paleontology, 85:250255.Google Scholar
Sumrall, C. D. 1997. The role of fossils in the phylogenetic reconstruction of Echinodermata, p. 267288. InWaters, J. A. and Maples, C. G.(eds.), Geobiology of Echinoderms, Paleontological Society Papers, 3.Google Scholar
Sumrall, C. D. 2010. A model for elemental homology for the peristome and ambulacra in blastozoan echinoderms, p. 269276. InHarris, L. G., Böttger, S. A., Walker, C. W., and Lesser, M. P., (eds.), Echinoderms: Durham. CRC Press, London.Google Scholar
Sumrall, C. D. and Parsley, R. L. 2003. Morphology and biomechanical implications of isolated discocystinid plates (Edrioasteroidea, Echinodermata) from the Carboniferous of North America. Palaeontology, 46:113138.Google Scholar
Sumrall, C. D. and Wray, G. A. 2007. Ontogeny in the fossil record: Diversification of body plans and the evolution of “aberrant” symmetry in Paleozoic echinoderms. Paleobiology, 33:149163.Google Scholar
Sumrall, C. D., Sprinkle, J., and Guensburg, T. E. 1997. Systematics and paleoecology of late Cambrian echinoderms from the western United States. Journal of Paleontology, 71:10911109.Google Scholar
Swofford, D. L. 2002. PAUP∗: Phylogenetic Analysis using Parsimony∗ and Other Methods, Version 4.0b10. Sinauer Associates, Inc, Sunderland, Massachusetts.Google Scholar
Thomas, A. O. and Ladd, H. S. 1926. Additional cystoids and crinoids from the Maquoketa Shale of Iowa. University of Iowa Studies in Natural History, 11:218.Google Scholar
Ubaghs, G. 1963. Cothurnocystis Bather, Phyllocystis Thoral and an undetermined member of the order Soluta (Echinodermata, Carpoidea) in the uppermost Cambrian of Nevada. Journal of Paleontology, 37:11331142.Google Scholar
Ubaghs, G. and Caster, K. E. 1968. Minervaecystidae, p. S606S607. InMoore, R. C.(ed.), Treatise on Invertebrate Paleontology. Pt. S, Echinodermata 1(2). Geological Society of America and University of Kansas, Lawrence.Google Scholar
Ubaghs, G. and Robison, R. A. 1985. A new homoiostelean and a new eocrinoid from the middle Cambrian of Utah. University of Kansas Paleontological Contributions, 115:124.Google Scholar
Ubaghs, G. and Robison, R. A. 1988. Homalozoan echinoderms of the Wheeler Formation (Middle Cambrian) of western Utah. The University of Kansas Paleontological Contributions, Paper, 120:117.Google Scholar
Withers, R. B. 1933. A new genus of fossil king-crabs. Proceedings of the Royal Society of Victoria, 45:1822.Google Scholar
Zamora, S. and Smith, A. B. 2012. Cambrian stalked echinoderms show unexpected plasticity of arm construction. Proceedings of the Royal Society, B, Vol. 279, 1727:293298.Google Scholar
Zamora, S., Lefebvre, B., Álvaro, J. J., Clausen, S., Elicki, O., Fatka, O., Jell, P., Kouchinsky, A., Lin, J., Nardin, E., Parsley, R. L., Rozhnov, S. V., Sprinkle, J., Sumrall, C. D., Vizcaïno, D., and Smith, A. B. In Press. Cambrian Echinoderm Palaeobiogeography, InHarper, D. and Servais, T.(eds.), Paleozoic Palaeobiogeography: Geological Society of London.Google Scholar