Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T03:00:13.891Z Has data issue: false hasContentIssue false

Miospores and cryptospores from the Silurian section at Allenport, Pennsylvania, USA

Published online by Cambridge University Press:  14 July 2015

John H. Beck
Affiliation:
Paleobotany Laboratory, Weston Observatory of Boston College, 381 Concord Road, Weston, Massachusetts 02493, ,
Paul K. Strother
Affiliation:
Paleobotany Laboratory, Weston Observatory of Boston College, 381 Concord Road, Weston, Massachusetts 02493, ,

Abstract

Non-marine and marine palynomorphs were collected from a Telychian through Gorstian rock outcrop located near Allenport, Pennsylvania, USA in the east-central part of the Appalachian Foreland Basin. Close sampling of the section revealed six distinct palynological assemblages of spores, cryptospores, acritarchs and prasinophycean algae, likely deposited in nearshore marine settings. The Silurian Period is a critical time in plant evolution as megafossils found elsewhere indicate that vascular plants (tracheophytes) originated during this interval. Palynoflorules generally show a transition from cryptospore-dominated to miospore-dominated assemblages during the latter half of the Silurian. This transition is evident at Allenport, where over 30 species of miospores and cryptospores are recognized, including two new species: Vermiverruspora cottera and Rugosphaera falloambita. The sequential progression of innovations in exine structure and sculpture seen in the nonmarine palynomorphs at Allenport closely matches evolutionary patterns documented previously in the Appalachian Basin, Avalonia, and elsewhere around the world.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Algeo, T. J., Berner, R. A., Maynard, J. B., and Scheckler, S. E. 1995. Late Devonian oceanic anoxic events and biotic crises: “Rooted” in the evolution of vascular land plants? Geological Society of America Today, 5(45):6466.Google Scholar
Algeo, T. J., Scheckler, S. E., and Maynard, J.B. 2001. Effects of the Middle to Late Devonian spread of vascular land plants on weathering regimes, marine biotas, and global climate, p. 213236. In Gensel, P. G. and Edwards, D. (eds.), Plants Invade the Land: Evolutionary and Environmental Perspectives. Columbia University Press, New York.Google Scholar
Allen, K. C. 1965. Lower and Middle Devonian spores of North and Central Vestspitsbergen. Palaeontology, 8:687748.Google Scholar
Banks, H. P. 1973. Occurrence of Cooksonia, the oldest vascular land plant macrofossil, in the Upper Silurian of New York state. Journal of the Indian Botanical Society, Golden Jubilee Volume, 50A:227235.Google Scholar
Batten, D. J. 1996. Colonial Chlorococcales, p. 191203. In Jansonius, J. and McGregor, D. C. (eds.), Palynology: Principles and Applications. Volume 1. American Association of Stratigraphic Palynologists Foundation, College Station, Texas.Google Scholar
Beck, J. H. and Strother, P. K. 2001. Silurian spores and cryptospores from the Arisaig Group, Nova Scotia, Canada. Palynology, 25:127177.CrossRefGoogle Scholar
Beck, J. H. and Strother, P. K. 2003. Spore clusters from the Silurian of Virginia. Abstracts with program, 20th Annual Mid-Continent Paleobotanical Colloquium, Chicago, p. 1.Google Scholar
Berry, W. B. N. and Boucot, A. J. 1970. Correlation of the North American Silurian rocks. Geological Society of America Special Paper 102, 289 p.Google Scholar
Bharadwaj, D. C. and Venkatachala, B. S. 1961. Spore assemblages out of a Lower Carboniferous shale from Spitsbergen. Palaeobotanist, 10:1847.Google Scholar
Boyce, C. K., Hotton, C., Fogel, M., Cody, G. D., Hazen, R. M., and Knoll, A. H. 2003. Comparative geochemistry suggests Prototaxites was a gigantic fungus. Geological Society of America Meeting, Abstracts with Programs, 34(7):587.Google Scholar
Brett, C. E., Goodman, W. M., and Loduca, S. T. 1993. Sequences, cycles, and basin dynamics in the Silurian of the Appalachian Foreland Basin. Sedimentary Geology, 69:191244.Google Scholar
Burgess, N. D. 1991. Silurian cryptospores and miospores from the type Llandovery area, southwest Wales. Palaeontology, 34:575599.Google Scholar
Burgess, N. D. and Richardson, J. B. 1991. Silurian cryptospores and miospores from the type Wenlock area, Shropshire, England. Palaeontology, 34:601628.Google Scholar
Burgess, N. D. and Richardson, J. B. 1995. Late Wenlock to early Přídolí cryptospores and miospores from south and southwest Wales, Great Britain. Palaeontographica. Abteilung B, 236:144.Google Scholar
Butterworth, M. A. and Williams, R. W. 1958. The small spore floras of the coals in the Limestone Coal Group and Upper Limestone Group of the Lower Carboniferous of Scotland. Transactions of the Royal Society of Edinburgh, 63:353392.Google Scholar
Chibrikova, E. V. 1959. Spores from the Devonian and older rocks of Bashkiria. Academy of Sciences of USSR, Bashkirian Branch, Data on paleontology and stratigraphy of Devonian and older deposits of Bashkiria. p. 3116.Google Scholar
Cotter, E. 1996. Silurian of central Pennsylvania, p. 128154. In Broadhead, T. (ed.), Sedimentary Environments of Silurian Taconia. Fieldtrips to the Appalachians and Southern Craton of Eastern North America. Studies in Geology. Volume 26. University of Tennessee, Knoxville.Google Scholar
Cotter, E. 1998. Silurian coastal sedimentation and meter-scale changes in the Appalachian foreland basin of Pennsylvania, p. 229237. In Landing, E. and Johnson, M. (eds.), Silurian Cycles: Linkages of Dynamic Stratigraphy with Atmospheric, Oceanic, and Tectonic Changes. New York State Museum Bulletin 491.Google Scholar
Cotter, E. and Inners, J. D. 1986. Silurian stratigraphy and sedimentology in the Huntingdon County area, p. 2739, 154–170. In Sevon, W. (ed.), 51st Annual Field Conference of Pennsylvania Geologists, Selected Geology of Bedford and Huntingdon Counties, Guidebook. Department of Environmental Resources, Bureau of Topographic and Geologic Survey, Harrisburg.Google Scholar
Cramer, F. H. 1969. Possible implications for Silurian paleogeography from phytoplankton assemblages of the Rose Hill and Tuscarora of Pennsylvania. Journal of Paleontology, 43(2):485491.Google Scholar
Cramer, F. H. and Diez, M. D. C. R. 1972. North American Silurian palynofacies and their spatial arrangement: acritarchs. Palaeontographica. Abteilung B, 138:107180.Google Scholar
Dawson, J. W. 1859. On fossil plants from the Devonian rocks of Canada. Quarterly Journal of the Geological Society of London, 15:477488.Google Scholar
Driese, S. G. and Mora, C. I. 2001. Diversification of Siluro-Devonian plant traces in paleosols and influence on estimates of paleoatmospheric CO2 levels, p. 237253. In Gensel, P. G. and Edwards, D. (eds.), Plants Invade the Land: Evolutionary and Environmental Perspectives. Columbia University Press, New York.Google Scholar
Driese, S. G., Mora, C. I., Cotter, E., and Forman, J. L. 1992. Paleopedology and stable isotope chemistry of Late Silurian vertic paleosols, Bloomsburg Formation, central Pennsylvania. Journal of Sedimentary Petrology, 62:825841.Google Scholar
Dufka, P. 1995. Upper Wenlock miospores and cryptospores derived from a Silurian volcanic island in the Prague Basin (Barrandian area, Bohemia). Journal of Micropalaeontology, 14:6779.Google Scholar
Edwards, D., Feehan, J., and Smith, D. G. 1983. A late Wenlock flora from County Tipperary, Ireland. Botanical Journal of the Linnean Society, 86:1936.Google Scholar
Edwards, D., Banks, H. P., Ciurca, S. J. Jr., and Laub, R. S. 2004. New Silurian cooksonias from dolostones of north-eastern North America. Botanical Journal of the Linnean Society, 146:399413.Google Scholar
Edwards, D. and Wellman, C. H. 2001. Embryophytes on land: The Ordovician to Lochkovian (Lower Devonian) Record, p. 328. In Gensel, P. G. and Edwards, D. (eds.), Plants Invade the Land: Evolutionary and Environmental Perspectives. Columbia University Press, New York.Google Scholar
Ettensohn, F. R. and Brett, C. E. 1998. Tectonic components in third-order Silurian cycles: examples from the Appalachian Basin and global implications, p. 145162. In Landing, E. and Johnson, M. (eds.), Silurian cycles: Linkages of Dynamic Stratigraphy with Atmospheric, Oceanic, and Tectonic Changes. New York State Museum 491.Google Scholar
Gensel, P. A., Johnson, N. G., and Strother, P. K. 1991. Early land plant debris (Hooker's “Waifs and Strays”?). Palaios, 5:520547.CrossRefGoogle Scholar
Giffen, E. B. 1979. Silurian vertebrates from Pennsylvania. Journal of Paleontology, 53:438445.Google Scholar
Gray, J. 1985. The microfossil record of early land plants: advances in understanding of early terrestrialization, 1970–1984, p. 167195. In Chaloner, W. G. and Lawson, J. D. (eds.), Evolution and Environment in the Late Silurian and Early Devonian. Volume B 309 No. 1138. Philosophical Transactions of the Royal Society of London.Google Scholar
Gray, J. 1988. Land plant spores and the Ordovician-Silurian boundary. Bulletin of the British Museum of Natural History (Geology), 43:351358.Google Scholar
Gray, J. 1991. Tetrahedraletes, Nodospora, and the “cross” tetrad: an accretion of myth. In Blackmore, S. and Barnes, S. H. (eds.), Pollen and Spores. Clarendon Press, Oxford.Google Scholar
Gray, J. and Boucot, A. J. 1971. Early Silurian spore tetrads from New York: earliest New World evidence for vascular plants? Science, 173:918921.Google Scholar
Gray, J., Massa, D., and Boucot, A. J. 1982. Caradocian land plant microfossils from Libya. Geology, 10:197201.Google Scholar
Hagstrom, J. 1997. Land-derived palynomorphs from the Silurian of Gotland, Sweden. GFF, 119:301316.Google Scholar
Helfrich, C. T. 1975. Silurian conodonts from Wills Mountain Anticline, Virginia, West Virginia, and Maryland. Geological Society of America Special Paper 161, 82 p.Google Scholar
Helfrich, C. T. 1980. Late Llandovery-Early Wenlock conodonts from the upper part of the Rose Hill and the basal part of the Mifflintown Formations, Virginia, West Virginia, and Maryland. Journal of Paleontology, 54(3):557569.Google Scholar
Hennelley, J. P. F. 1958. Spores and pollens from a Permian-Triassic transition, N.S.W. Proceedings of the Linnean Society of New South Wales, 83(3):363369.Google Scholar
Hoffmeister, W. S. 1959. Lower Silurian plant spores from Libya. Micropaleontology, 5(3):331334.Google Scholar
Hoskins, D. M. 1961. Stratigraphy and paleontology of the Bloomsburg Formation of Pennsylvania and adjacent states. Pennsylvania Geological Survey Bulletin G: 36, 125 p.Google Scholar
Hueber, F. M. 2001. Rotted wood-alga-fungus: the history and life of Prototaxites Dawson 1859. Review of Palaeobotany and Palynology, 116:123158.Google Scholar
Johnson, N. G. 1985. Early Silurian palynomorphs from the Tuscarora Formation in central Pennsylvania and their paleobotanical and geological significance. Review of Palaeobotany and Palynology, 45:307360.Google Scholar
Kenrick, P. and Crane, P. R. 1997a. The Origin and Early Diversification of Land Plants: A Cladistic Study. Smithsonian Institution Press, Washington and London, 441 p.Google Scholar
Kenrick, P. and Crane, P. R. 1997b. The origin and early evolution of plants on land. Nature, 389(6646):3339.Google Scholar
Kent, D. V. and Miller, J. D. 1988. New perspectives from paleomagnetism: Paleozoic drift and Appalachian tectonics. Lamont-Doherty Geological Observatory of Columbia University, Yearbook, p. 1217.Google Scholar
Kleffner, M. A. 1989. A conodont-based Silurian chronostratigraphy. Geological Society of America Bulletin, 101:904912.Google Scholar
Kleffner, M. A. 1995. A conodont- and graptolite-based Silurian chronostratigraphy, p. 159176. In Mann, K. O. and Lane, H. R. (eds.), Graphic Correlation. SEPM Special Publication, 53. Tulsa, Oklahoma.Google Scholar
Lang, W. H. 1937. On the plant-remains from the Downtonian of England and Wales. Philosophical Transactions of the Royal Society of London, B227:245291.Google Scholar
Luber, A. A. and Waltz, I. E. 1938. Klassifikatsiya i stratigraphicheskoe znachenie spor nekotorich kamennoughhol'nich mestorojdenii SSSR. Trudy TSNIGRI, Moscow, 105:145.Google Scholar
Margulis, L. and Schwartz, K. V. 1998. Five kingdoms: An illustrated guide to the phyla of life on Earth (third edition). W. H. Freeman and Company, New York, 520 p.Google Scholar
McGregor, D. C. 1961. Spores with proximal radial patterns from the Devonian of Canada. Geological Survey of Canada Bulletin 76, 11 p.Google Scholar
McGregor, D. C. and Camfield, M. 1976. Upper Silurian? to Middle Devonian spores of the Moose River Basin, Ontario. Geological Survey of Canada Bulletin, 263:63 p.Google Scholar
Mcregor, D. C. and Narbonne, G. M. 1978. Upper Silurian trilete spores and other microfossils from the Read Bay Formation, Cornwallis Island, Canadian Arctic. Canadian Journal of Earth Sciences, 15(8):12921303.Google Scholar
Meyer, S. C., Textoris, D. A., and Dennison, J. M. 1992. Lithofacies of Silurian Keefer Sandstone, east-central Appalachian basin, USA. Sedimentary Geology, 76:187206.Google Scholar
Miller, M. A. and Eames, L. E. 1982. Palynomorphs from the Silurian Medina Group (Lower Llandovery) of the Niagara Gorge, Lewiston, New York, U.S.A. Palynology, 6:221254.Google Scholar
Mischler, B. D. and Churchill, S. P. 1984. A cladistic approach to the phylogeny of the “bryophytes.” Brittonia, 37:406424.Google Scholar
Molyneux, S. G. and Al-Hajri, S. 2000. Palynology of a Problematic Lower Palaeozoic Lithofacies in Central Saudi Arabia, p. 1841. In Al-Hajri, S. and Owens, B. (eds.), Stratigraphic Palynology of the Palaeozoic of Saudi Arabia. Arabian Printing and Publishing House, Manama, Bahrain.Google Scholar
Naumova, S. N. 1953. Sporovo-pyltsevye kompleksy verkhnego devona Russkoi platformy I ikh znacheni dlya stratigrafii. Trudy Institut Geologischeskikh Nauk, 143:1154.Google Scholar
Niklas, K. J. 1976. Chemical examinations of some non-vascular Paleozoic plants. Brittonia, 28:113137.Google Scholar
Niklas, K. J. and Pratt, L. 1980. Evidence for lignin-like constituents in early Silurian (Llandoverian) plant fossils. Science, 209:396397.CrossRefGoogle ScholarPubMed
Niklas, K. J. and Gensel, P. G. 1978. Chemotaxonomy of some Paleozoic vascular plants. Part III. Cluster configurations and their bearing on taxonomic relationships. Brittonia, 30(2):216232.Google Scholar
Niklas, K. J. and Smocovitis, V. 1983. Evidence for a conduction strand in early Silurian (Llandoverian) plants: Implications for the evolution of the land plants. Paleobiology, 9(2):126137.Google Scholar
Playford, G. and Dettmann, M. E. 1996. Spores, p. 227260. In Jansonius, J. and McGregor, D. C. (eds.), Palynology: Principles and Applications. Volume 1. American Association of Stratigraphic Palynologists Foundation, College Station, Texas.Google Scholar
Potonié, H. 1893. Die Flora des Rotliegenden von Thüringen. Abhandlungen der Königlich Preussischen Geologischen Landesanstalt, 9, 298 p.Google Scholar
Potonié, R. and Kremp, G. 1954. Die Gattungen der paläozoischen Sporae dispersae und ihre Stratigraphie. Geologisches Jahrbuch, 69:111169.Google Scholar
Potonié, R. and Lele, K. M. 1961. Studies in the Talchir Flora of India; 1. Sporae dispersae from the Talchir beds of south Rewa Gondwana Basin. The Palaeobotanist, 10:2236.Google Scholar
Pratt, L. M., Phillips, T. L., and Dennison, J. M. 1978. Evidence of nonmarine vascular plants from the early Silurian (Llandoverian) of Virginia, U.S.A. Review of Palaeobotany and Palynology, 25:121141.Google Scholar
Rast, N. and Skehan, J. W. 1993. Mid-Paleozoic orogensis in the North Atlantic: the Acadian orogeny, p. 125. In Roy, D. C. and Skehan, J. W. (eds.), The Acadian Orogeny: Recent Studies in New England, Maritime Canada, and the Autochthonous Foreland. Geological Society of America Special Paper 275.Google Scholar
Reinhardt, J. and Hardie, L. A. 1976. Selected Examples of Carbonate Sedimentation, Lower Paleozoic of Maryland. Maryland Geological Survey Guidebook No. 5, 53 p.Google Scholar
Reinsch, P. F. 1891. Neue Untersuchungen über die Mikrostruktur der Steinkohle des Carbon, Dyas und Trias. T.O. Weigel, Leipzig, Germany, 124 p.Google Scholar
Retallack, G. J. 1985. Fossil soils as grounds for interpreting the advent of large plants and animals on land. Philosophical Transactions of the Royal Society of London, B309:105142.Google Scholar
Retallack, G. J. 1986. The fossil record of soils, p. 157. In Wright, V. P. (ed.), Paleosols: Their Recognition and Interpretation. Blackwell Scientific Press, Oxford.Google Scholar
Retallack, G. J. and Feakes, C. R. 1987. Trace fossil evidence for Late Ordovician animals on land. Science, 235:6163.Google Scholar
Richardson, J. B. 1965. Middle Old Red Sandstone spore assemblages from the Orcadian Basin, Northeast Scotland. Palaeontology, 7(4):559605.Google Scholar
Richardson, J. B. 1988. Late Ordovician and early Silurian cryptospores and miospores from northeast Libya, p. 89109. In El-Arnauti, A., Owens, B., and Thusu, B. (eds.), Subsurface Palynostratigraphy of Northeast Libya. Garyounis University Publications, Benghazi, Libya.Google Scholar
Richardson, J. B. 1996. Taxonomy and classification of some new early Devonian cryptospores from England, p. 740. In Cleal, C. J. (ed.), Studies on early land plant spores from Britain. Special Papers in Palaeontology 55.Google Scholar
Richardson, J. B. and Ioannides, N. 1973. Silurian palynomorphs from Tanezzuft and Acacus Formations, Tripolitania, North Africa. Micropaleontology, 19(3):257307.Google Scholar
Richardson, J. B. and Lister, T. R. 1969. Upper Silurian and Lower Devonian spore assemblages from the Welsh Borderland and south Wales. Palaeontology, 12:201252.Google Scholar
Richardson, J. B., Ford, J. H., and Parker, F. 1984. Miospores, correlation and age of some Scottish Lower Old Red Sandstone sediments from the Strathmore region (Fife and Angus). Journal of Micropalaeontology, 3(2): 109124.Google Scholar
Richardson, J. B., Rodriguez, R. M., and Sutherland, S. J. E. 2001. Palynological zonation of Mid-Palaeozoic sequences from the Cantabrian Mountains, NW Spain: Implications for inter-regional and interfacies correlation of the Ludford/Přídolí and Silurian/Devonian boundaries, and plant dispersal patterns. Bulletin of the Natural History Museum of London (Geology), 57(2):115162.Google Scholar
Rodriguez, R. M. 1978a. Miosporas de la Formación Furada/San Pedro (Silúrico superior-Devónico inferior), Cordillera Cantábrica, noroeste de España. Palinología Número Extraordinario, 1:407433.Google Scholar
Rodriguez, R. M. 1978b. Miospores de la Formation San Pedro (Silurien-Dévonien) a Corniero (Province de Léon, Espagne). Revue de Micropaléontologie, 20(4):216221.Google Scholar
Rodriguez, R. M. 1983. Palinologia de las formaciones del Silurico superior-Devonico inferior de la Cordillera Cantabrica, Noroeste de España. Publicaciones de la Universidad de Léon, España, 231 p.Google Scholar
Rubenstein, C. V. and Steemans, P. 2002. Miospore assemblages from the Silurian-Devonian boundary, in borehole A1-61, Ghadamis Basin, Libya. Review of Palaeobotany and Palynology, 118:397421.Google Scholar
Rubenstein, C. V. and Vaccari, N. E. 2004. Cryptospore assemblages from the Ordovician/Silurian boundary in the Puna Region, Northwest Argentina. Palaeontology, 47(4):10371061.Google Scholar
Rude, P. D. and Aller, R. C. 1989. Early diagenetic alteration of lateritic particle coatings in Amazon continental shelf sediments. Journal of Sedimentary Petrology, 59:704716.Google Scholar
Schopf, J. M., Mencher, E., Boucot, A. J., and Andrews, H. N. 1966. Erect plants in the early Silurian of Maine. U.S. Geological Survey Professional Paper, 550D:D69D75.Google Scholar
Servais, T. 1996. Some considerations on acritarch classification. Review of Palaeobotany and Palynology, 93:922.Google Scholar
Shaw, J. and Renzaglia, K. 2004. Phylogeny and diversification of Bryophytes. American Journal of Botany, 91(10):15571581.CrossRefGoogle ScholarPubMed
Smith, A. H. V. and Butterworth, M. A. 1967. Miospores in the coal seams of the Carboniferous of Great Britain. Special Papers in Palaeontology 1, 324 p.Google Scholar
Smosna, R. A., Patchen, D. G., Warshauer, S. M., and Perry, W. J. 1977. Relationships between depositional environments, Tonoloway Limestone, and distribution of evaporites in the Salina Formation, West Virginia, p. 125143. In Fisher, J. H. (ed.), Reefs and Evaporites—Concepts and Depositional Models. American Association of Petroleum Geologists Studies in Geology, 5.Google Scholar
Steemans, P. 2000. Miospore evolution from the Ordovician to the Silurian. Review of Palaeobotany and Palynology, 113:189196.Google Scholar
Steemans, P., Higgs, K. T., and Wellman, C. H. 2000. Cryptospores and trilete spores from the Llandovery, Nuayyim-2 Borehole, Saudi Arabia, p. 92115. In Al-Hajri, S. and Owens, B. (eds.), Stratigraphic Palynology of the Palaeozoic of Saudi Arabia. Arabian Printing and Publishing House, Manama, Bahrain.Google Scholar
Steemans, P., Le Hérissé, A., and Bozdogan, N. 1996. Ordovician and Silurian cryptospores and miospores from southeastern Turkey. Review of Palaeobotany and Palynology, 93:3576.Google Scholar
Strother, P. K. 1988. New species of Nematothallus from the Silurian Bloomsburg Formation of Pennsylvania. Journal of Paleontology, 62(6):967982.Google Scholar
Strother, P. K. 1991. A classification schema for the cryptospores. Palynology, 15:219236.Google Scholar
Strother, P. K. 1996. Acritarchs, p. 81106. In Jansonius, J. and McGregor, D. C. (eds.), Palynology: Principles and Applications. Volume 1. American Association of Stratigraphic Palynologists Foundation, College Station, Texas.Google Scholar
Strother, P. K. 2000. Cryptospores: The origin and early evolution of the terrestrial flora, p. 320. In Gastaldo, R. A. and DiMichele, A. W. (eds.), Phanerozoic Terrestrial Ecosystems, Paleontological Society Paper 6, Tulsa.Google Scholar
Strother, P. K. and Traverse, A. 1979. Plant microfossils from Llandoverian and Wenlockian rocks of Pennsylvania. Palynology, 3:122.Google Scholar
Strother, P. K., Al-Hajri, S., and Traverse, A. 1996. New evidence for land plants from the lower Middle Ordovician of Saudi Arabia. Geology, 24:5558.Google Scholar
Strother, P. K., Wood, G. D., Taylor, W. A., and Beck, J. H. 2004. Middle Cambrian cryptospores and the origin of land plants. Memoirs of the Association of Australasian Palaeontologists, 29:99113.Google Scholar
Taylor, W. A. 2001. Evolutionary hypothesis of Cryptospore producing plants based on wall ultrastructure, p. 1115. In Goodman, D. K. and Clark, R. T. (eds.), Proceedings of the IX International Palynological Congress, Houston, Texas, USA. Volume 1. American Association of Stratigraphic Palynologists Foundation, Dallas, Texas, USA.Google Scholar
Taylor, W. A. and Strother, P. K. In press. Ultrastructure of some Cambrian palynomorphs from the Bright Angel Shale, Arizona, USA. Review of Palaeobotany and Palynology.Google Scholar
Tomescu, A. M. F. and Rothwell, G. W. 2006. Wetlands before tracheophytes: Thalloid terrestrial communities of the Early Silurian Passage Creek biota (Virginia), p. 4156. In Greb, S. F. and DiMichele, W. A. (eds.), Wetlands through time. Geological Society of America Special Paper, 399.Google Scholar
Tourek, T. J. 1970. The depositional environments and sediment accumulation models for the upper Silurian Wills Creek Shale and Tonoloway Limestone, Central Appalachians. Unpublished Ph.D. dissertation, The Johns Hopkins University, 282 p.Google Scholar
Van der Voo, R. 1988. Paleozoic paleogeography of North America, Gondwana, and intervening displaced terranes: comparisons of paleomagnetism with paleoclimatology and biogeographical patterns. Geological Society of America Bulletin, 100:311324.Google Scholar
Vavrdová, M. 1988. Further acritarchs and terrestrial plant remains from the Late Ordovician at Hlasna Treban (Czechoslovakia). Časopis pro mineralogii a geologii, 33(1):110.Google Scholar
Vavrdová, M. 1989. New acritarchs and miospores from the Late Ordovician of Hlasna Treban, Czechoslovakia. Časopis pro mineralogii a geologii, 34(4):403419.Google Scholar
Vavrdová, M. 1990. Coenobial acritarchs and other palynomorphs from the Arenig/Llanvirn boundary, Prague basin. Věstnik Ústředniho ústavu geologického, 65(4):373–242.Google Scholar
Wellman, C. H. 1993a. A land plant microfossil assemblage of mid Silurian age from the Stonehaven Group, Scotland. Journal of Micropalaeontology, 12:4766.Google Scholar
Wellman, C. H. 1993b. A Lower Devonian sporomorph assemblage from the Midland Valley of Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences, 84:117136.Google Scholar
Wellman, C. H. 1996. Cryptospores from the type area of the Caradoc Series in Southern Britain, p. 103136. In Cleal, C. J. (ed.), Studies on early land plant spores from Britain. Special Papers in Palaeontology, 55.Google Scholar
Wellman, C. H. 2003. Dating the origin of land plants, p. 119141. In Donoghue, P. C. J. and Smith, M. P. (eds.), Telling the evolutionary time: Molecular clocks and the fossil record. CRC Press, London.Google Scholar
Wellman, C. H. and Gray, J. 2000. The microfossil record of early land plants. Philosophical Transactions of the Royal Society of London, B355:717732.Google Scholar
Wellman, C. H., Habgood, K., Jenkins, G., and Richardson, J. B. 2000. A new plant assemblage (microfossil and megafossil) from the Lower Old Red Sandstone of the Anglo-Welsh Basin: Its implications for the palaeoecology of early terrestrial ecosystems. Review of Palaeobotany and Palynology, 109:161196.CrossRefGoogle ScholarPubMed
Wellman, C. H., Higgs, K. T., and Steemans, P. 2000. Spore assemblages from a Silurian sequence in borehole Hawiyah-151 from Saudi Arabia, p. 116133. In Al-Hajri, S. and Owens, B. (eds.), Stratigraphic Palynology of the Palaeozoic of Saudi Arabia. Arabian Printing and Publishing House, Manama, Bahrain.Google Scholar
Wellman, C. H., Osterloff, P. L., and Mohiuddin, U. 2003. Fragments of the earliest land plants. Nature, 425:282285.Google Scholar
Wellman, C. H. and Richardson, J. B. 1993. Terrestrial plant microfossils from Silurian inliers of the Midland Valley of Scotland. Palaeontology, 36(1):155193.Google Scholar
Wellman, C. H. and Richardson, J. B. 1996. Sporomorph assemblage from the ‘Lower Old Red Sandstone’ of Lorne, Scotland, p. 41101. In Cleal, C. J. (ed.), Studies on early land plant spores from Britain. Special Papers in Palaeontology 55.Google Scholar
White, D. 1902. Description of a fossil alga from the Chemung of New York, with remarks on the genus Haliserites Sternberg. New York State Museum Bulletin, 52:593605.Google Scholar
Willard, B. 1938. Evidence of Silurian land plants in Pennsylvania. Proceedings of the Pennsylvania Academy of Sciences, 12:121124.Google Scholar
Wood, G. D. and Miller, M. A. 1996. Pre-Carboniferous Chlorophyta: New reports of Hydrodictyaceae, ?Sendesmaceae [sic] and Zygnemataceae, p. 703717. In Fatka, O. and Servais, T. (eds.), Acritarchs in Praha 1996. Acta Universitatis Carolinae Geologica. Volume 40 (3–4). Univerzita Karlova, Praha.Google Scholar