Hostname: page-component-65f69f4695-s676w Total loading time: 0 Render date: 2025-06-26T20:46:33.854Z Has data issue: false hasContentIssue false

Middle to late Eocene Nummulites from the southern Tethys, Fayum, Egypt: taxonomic, biostratigraphic, and paleobiogeographic context

Published online by Cambridge University Press:  14 May 2025

Soad A. Raafat
Affiliation:
Geology Department, Faculty of Science, Damietta University, New Damietta City, Damietta 34517, Egypt
Mahmoud A. Kora
Affiliation:
Geology Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
Zaki A. Abdel-Fattah
Affiliation:
Geology Department, Faculty of Science, Damietta University, New Damietta City, Damietta 34517, Egypt
Safia Gaber Al Menoufy*
Affiliation:
Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo 11341, Egypt
*
Corresponding author: Safia Gaber Al Menoufy; Email: safiagaber194@gmail.com

Abstract

The present paper focuses on the middle to late Eocene Nummulites from the southern margin of the Tethys Ocean to address gaps in taxonomy of Nummulites, with emphasis on their biostratigraphic implications and paleobiogeographic distributions. Integration of biometric and morphological data with other taxonomic characters is used to define four Nummulites species (Nummulites midawaraensis Kenawy, 1978, N. biarritzensis d’Archiac and Haime, 1853, N. lyelli d’Archiac and Haime, 1853, and N. striatus (Bruguière, [1792]) from Fayum, Egypt. Biostratigraphically, three main biozones are identified. The Nummulites midawaraensis Biozone characterizes the Lutetian Midawara Formation. The N. lyelli Biozone heralds the Bartonian El-Gharaq Formation. The uppermost Priabonian Stage is demarcated by the N. striatus Biozone within the Birket Qarun Formation. These biozones match well with the Lutetian to Priabonian Tethyan larger benthic foraminiferal biozones. Distinct temporal changes and geographic distributions of the Nummulites assemblages distinguish remarkable middle to late Eocene paleobiogeographic provinces within the Tethys Ocean. Nummulites midawaraensis is probably endemic to the Egyptian southern Tethys Ocean, whereas the N. biarritzensis, N. lyelli, and N. striatus flourished throughout the Tethyan Realm, extending eastward from Spain to Pakistan and India. Notably, our findings strengthen the evidence for a strong connection between the Indo-Pakistani and Tethyan provinces during the Eocene. The relatively warm events throughout the middle to late Eocene led to an active carbonate factory and flourishing of calcite tests of Nummulites that favored clear waters and light under tropical to subtropical shallow-marine conditions.

Information

Type
Articles
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Handling Editor: Brian Huber

References

Abbass, H.L., 1967, A monograph on the Egyptian Paleocene and Eocene gastropods: Egyptian General Organisation for Government Printing Office, Cairo, Geological Survey, Paleontological series, Monograph no. 4, 154 p.Google Scholar
Abdel-Fattah, Z.A., 2016, Facies transition and depositional architecture of the late Eocene tide-dominated delta in northern coast of Birket Qarun, Fayum, Egypt: Journal of African Earth Sciences, v. 119, p. 185203.CrossRefGoogle Scholar
Abdel-Fattah, Z.A., 2018, Bioerosion in the middle Eocene larger foraminifer Nummulites in the Fayum depression, Egypt: Proceedings of the Geologists’ Association, v. 129, p. 774781.CrossRefGoogle Scholar
Abdel-Fattah, Z.A., and Gingras, M.K., 2020, Origin of compound biogenic sedimentary structures in Eocene strata of Wadi El-Hitan universal heritage area, Fayum, Egypt: Mangrove roots or not?: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 560, n. 110048.CrossRefGoogle Scholar
Abdel-Fattah, Z.A., Gingras, M.K., Caldwell, M.W., and Pemberton, S.G., 2010, Sedimentary environments and depositional characteristics of the middle to upper Eocene whale-bearing succession in the Fayum Depression, Egypt: Sedimentology, v. 57, p. 446476.CrossRefGoogle Scholar
Abdel-Fattah, Z.A., Gingras, M.W., and Pemberton, S.G., 2011, Significance of hypoburrow nodule formation associated with large biogenic sedimentary structures in open-marine bay siliciclastics of the upper Eocene Birket Qarun Formation, Wadi El-Hitan, Fayum, Egypt: Sedimentary Geology, v. 233, p. 111128.CrossRefGoogle Scholar
Abdel-Fattah, Z.A., Gingras, M.K., Caldwell, M.W., Pemberton, S.G., and MacEachern, J.A., 2016, The Glossifungites ichnofacies and sequence stratigraphic analysis: a case study from middle to upper Eocene successions in Fayum, Egypt: Ichnos, v. 23, p. 157179.CrossRefGoogle Scholar
Abd El Naby, A.I., Boukhary, M., and Al Menoufy, S., 2013, What are Nummulites discorbinus, N. beaumonti (Neotypes) and N. qurnensis n. sp.? Biometry and stratigraphic significance from the Middle Eocene, Egypt: Historical Biology, v. 25, p. 2741.CrossRefGoogle Scholar
Abu El-Ghar, M.S., 2012, Sequence stratigraphy and cyclicity in the middle Eocene of the Fayoum ranges, Western Desert, Egypt: implications for regional sea level changes: Marine and Petroleum Geology, v. 29, p. 276292.CrossRefGoogle Scholar
Abu-Ellil, M.M., 2004, Stratigraphy of the middle Eocene rocks in the area of Qattamia–northern Galala stretch, north Eastern Desert, Egypt [Ph.D. thesis]: Zagazig, Egypt, Faculty of Science, Zagazig University, 236 p.Google Scholar
Adams, C.G., 1988, Septa, septal traces and septal filaments in the foraminiferal genus Nummulites Lamarck: Journal of Micropalaeontolgy, v. 7, p. 89102.CrossRefGoogle Scholar
Afify, A.M., Serra-Kiel, J., Sanz-Montero, M.E., Calvo, J.P., and Sallam, E.S., 2016, Nummulite biostratigraphy of the Eocene succession in the Bahariya Depression, Egypt: implications for timing of iron mineralization: Journal of African Earth Sciences, v. 120, p. 4455.CrossRefGoogle Scholar
Ahmad, S., Kroon, D., Rigby, S., and Khan, S., 2017, Paleogene nummulitid biostratigraphy of the Kohat and Potwar Basins in north-western Pakistan with implications for the timing of the closure of eastern Tethys and uplift of the western Himalayas: Stratigraphy, v. 13, p. 227301.Google Scholar
Aigner, T., 1982, Event stratification in nummulite accumulations and in shell beds from the Eocene of Egypt, in Einsele, G., and Seilacher, A., eds., Cyclic and Event Stratification: Berlin, Springer, p. 248262.CrossRefGoogle Scholar
Al Faitouri, M., Muftah, A., Al Tarhouni, F., and El Zaroug, R., 2019, Taxonomical and biostratigraphical notes on Nummulites of Darnah Formation at Daryanah–Al Abyar area, Cyrenaica, NE Libya: Libyan Journal of Science and Technology, v. 9, p. 3845.Google Scholar
Al Menoufy, S., Abul-Nasr, R., and Askar, M., 2019, A new hiatus within the Lutetian of the El Basatin section, Gebel Mokattam, Egypt: field and sedimentological observations, with special emphasis on Nummulites: Acta Geologica Sinica English Edition, v. 93, p. 1229.Google Scholar
Al Menoufy, S., Abd El-Gaied, I.M., and Abd El-Aziz, S.M., 2022, Eocene–Oligocene larger foraminifera from Libya and their palaeoecologic context: Historical Biology, v. 36, p. 147164.Google Scholar
Anderson, J.L., and Feldmann, R.M., 1995, Lobocarcinus lumacopius (Decapoda: Cancridae), a new species of cancrid crab from the Eocene of Fayum, Egypt: Journal of Paleontology, v. 69, p. 922932.CrossRefGoogle Scholar
Andrews, C.W., 1904, Further notes on the mammals of the Eocene of Egypt, Part 111: Geological Magazine, v. 1, p. 211215.CrossRefGoogle Scholar
Andrews, C.W., 1906, A descriptive catalogue of the Tertiary Vertebrata of the Fayum, Egypt: London, British Museum (Natural History), 324 p.Google Scholar
Antar, M.S., Gohar, A.S., El-Desouky, H., Seiffert, E.R., El-Sayed, S., Claxton, A.G., and Sallam, H.M., 2023, A diminutive new basilosaurid whale reveals the trajectory of the cetacean life histories during the Eocene: Communications Biology, v. 6, n. 707.Google Scholar
Arni, P., and Lanterno, E., 1972, Considerations paleoecologiques et Interpretation des calcaires de 1’Eocene du Veronais: Archives Des Sciences Geneve, v. 2Js, p. 251283.Google Scholar
Assal, E.M., Wanas, H.A., and Abou Awad, H.A., 2024, The middle–upper Eocene in the northern plateau of the Bahariya depression, Western Desert (Egypt) and correlation with other Tethyan sectors: Marine and Petroleum Geology, v. 161, n. 106705.CrossRefGoogle Scholar
Avşar, N., 1991, Presence of Nummulites Fabianii (Prever) Group (Nummulites ex gr. fabianii) and associated foraminifers in the Elazığ Region: Bulletin of the Mineral Research and Exploration, v. 112, p. 7176.Google Scholar
Bassi, D., and Nebelsick, J.H., 2010, Components, facies and ramps: redefining upper Oligocene shallow water carbonates using coralline red algae and larger foraminifera (Venetian area, northeast Italy): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 295, p. 258280.CrossRefGoogle Scholar
Bassi, D., Nebelsick, J.H., Puga-Bernabéu, Á., and Luciani, V., 2013, Middle Eocene Nummulites and their offshore re-deposition: a case study from the middle Eocene of the Venetian area, northeastern Italy: Sedimentary Geology, v. 297, p. 115.CrossRefGoogle Scholar
Basterot, B., 1825, Description de coquilles fossiles des environs de Bordeaux: Univa1ves, in Description geo1ogique du bassin tertiaire du Sud Ouest de la France: Mémoires de la Société d’Naturelle de Paris, v. 2, p. 1772.Google Scholar
Beadnell, H.J.L., 1905, The Topography and Geology of the Fayum Province of Egypt: Cairo, Survey Department, 101 p.CrossRefGoogle Scholar
Beavington-Penney, S.J., Wright, V.P., and Racey, A., 2005, Sediment production and dispersal on foraminifera-dominated early Tertiary ramps: the Eocene El Garia Formation, Tunisia: Sedimentology, v. 52, p. 537569.CrossRefGoogle Scholar
Beavington-Penney, S.J., Wright, V.P., and Racey, A., 2006, The middle Eocene Seeb Formation of Oman: an investigation of a cyclicity, stratigraphic completeness, and accumulation rates in shallow marine carbonate settings: Journal of Sedimentary Research, v. 76, p. 11371161.CrossRefGoogle Scholar
Bellardi, L., 1854, Catalogo ragionato dei fossili nummulitici d’Egitto della raccolta del Regio Museo Mineralogico di Torino: Torino, Stamperia Reale, p. 171204.CrossRefGoogle Scholar
Blondeau, A., 1972, Les Nummulites. De I’enseignement a la recherche: Paris, Editions Vuibert, Sciences de la Terre, 254 p.Google Scholar
Bohaty, S.M., and Zachos, J.C., 2003, Significant Southern Ocean warming event in the late middle Eocene: Geology, v. 31, p. 10171020.CrossRefGoogle Scholar
BouDagher-Fadel, M.K., 2005, Nummulites and Assilina evolution and paleobiogeography in the Tethys: from Late Cretaceous to early Paleogene: Geobios, v. 38, p. 305320.Google Scholar
BouDagher-Fadel, M.K., and Price, M., 2014, The phylogenetic and palaeogeographic evolution of the nummulitoid larger benthic foraminifera: Micropaleontology, v. 60, p. 483508.CrossRefGoogle Scholar
Boukhary, M.A., and Hussein-Kamel, Y., 1993, What is Nummulites gizehensis (FORSKAL) s.str? Micropaleontology, v. 36, p. 318.Google Scholar
Boukhary, M., and Kamal, D., 1993, Nummulites praestriatus n. sp. from the Giushi member (biarritzian), Gebel Mokattam, greater Cairo, Egypt: Neues Jahrbuch für Geologie und Paläontologie–Monatshefte, p. 585595.CrossRefGoogle Scholar
Boukhary, M., and Kamal, D., 2003, What is Nummulites lyelli? Evolution in large foraminifera during the middle Eocene, Egypt: Micropaleontology, v. 49, p. 171187.CrossRefGoogle Scholar
Boukhary, M., Hussein, A.I.M., and Kamal, D., 2010, Precursors of the Nummulites gizehensis and N. partschi group from Egypt: Journal of African Earth Sciences, v. 56, p. 4354.CrossRefGoogle Scholar
Boukhary, M., Abul-Nasr, R., Al Menoufy, S., Cherif, O., and Höntzsch, S., 2013, Early Eocene Nummulitids from Wadi Dakhl, Egypt: biometry and stratigraphic implications: Micropaleontology, v. 59, p. 145166.CrossRefGoogle Scholar
Bown, T.M., and Kraus, M.J., 1988, Geology and paleoenvironment of the Oligocene Jebel Qatrani formation and adjacent rocks: U.S. Geological Survey Professional Paper 1452, 60 p.CrossRefGoogle Scholar
Bronn, H.G., 1831, Übersicht der Fossilen Überreste in den tertiären subappeninischen Gebirgen: Italiens Tertiär–Gebilde und deren organische Einschlüsse, v. 12: Heidelberg, Groos, 176 p.Google Scholar
Bruguière, J.G., 1792, Camerine, in Bruguière, J.G., Deshayes, G.P., and Lamarck, J., eds., Histoire naturelle des Vers, v. 1, p. 395400, https://www.biodiversitylibrary.org/page/8892383.CrossRefGoogle Scholar
Cantraine, M., 1838, Notice sur un genre nouveau de la famille des Ostrac: Bulletins de l’Acad´emie royale des sciences et Belles-Lettres de Bruxelles, v. 5, p. 111113.Google Scholar
Carez, L., 1881, Étude des Terrains crétacés et tertiaires du nord de l’Espagne: Paris, F. Savy, 327 p.Google Scholar
Conoco, C., 1987, Geological map of Egypt (NH 36 SW Beni Suef): Cairo, The Egyptian General Petroleum Corporation.Google Scholar
Costa, E., Garcés, M., López–Blanco, M., Serra–Kiel, J., Bernaola, L., Cabrera, L., and Beamud, E., 2013, The Bartonian–Priabonian marine record of the eastern South Pyrenean Foreland Basin (NE Spain): a new calibration of the larger foraminifers and calcareous nannofossil biozonation: Geologica Acta, v. 11, p. 177193.Google Scholar
Cuvillier, J., 1933, Nouvelle contribution à la paléontologie du nummulitique Égyptien: Mémoires de l’Institut d’Égypte, v. 22, p. 176.Google Scholar
d’Archiac, E.J.A.D., and Haime, J., 1853, Description des animaux fossiles du groupe nummulitique de l’Inde: précédée d’un résumé géologique et d’une monographie des Nummulites: Gide et Baudry Paris, v. 1, 164 p.Google Scholar
de Blainville, H.M.D., 1825–1827, Manuel de Malacol-ogie et de Conchyliologie: Paris, F.G. Levrault, 664 p., 109 pls.Google Scholar
Decrouez, D., and Lantrno, E., 1979, Les “Banks ä Nummulites” de 1’Eocene mesogeen et leurs implications: Archives Des Sciences Geneve, v. 3J, p. 6794.Google Scholar
de la Harpe, P., 1883, Monographie der in Ägypten und der libyschen wüste vor kommenden Nummuliten: Paleontographica, v. 30, p. 155216, pls. 30–35.Google Scholar
de Loriol, P., 1863, Description de deux échinides nouveaux de l’étage nummulitique d’Egypte: Genève, Ramboz et Schuchardt, 7 p.Google Scholar
de Loriol, P., 1880, Description de quatre échinodermes nouveaux: Memoires de al Societe Paleontologique Suisse, v. 7, p. 315.Google Scholar
Deshayes, G.P., 1832, Description des coquilles fossiles des environs de Paris: Paris. Deshayes 3271 Description des Coquilles Fossiles des Environs de Paris 1832, v. 1, p. 327392.Google Scholar
D’Orbigny, A.D., 1826, Tableau méthodique de la classe des Céphalopodes: Annales des Sciences Naturelles, v. 7, 120 p.Google Scholar
Eichwald, C.E., 1830, Zoologia specialis pars Altera: Vilnius, Zawadzki, 233 p.Google Scholar
Elattaar, A.A., and Strougo, A., 2001, Echinoids from the lower and upper Eocene of Sinai: Middle East Research Center Ain Shams University, Earth Science Series, v. 15, p. 6178.Google Scholar
El Baz, S.M., Wanas, H.A., Abou Awad, H.A., and Assal, E.M., 2023, The middle–upper Eocene benthic foraminifera from north–west Fayoum area, Egypt: paleoecology and their similarity to the Tethyan provinces: Journal of African Earth Sciences, v. 204, n. 104962.CrossRefGoogle Scholar
El Hawat, A.S., 1997, Sedimentary basins of Egypt: an overview of dynamic stratigraphy, in Selley, R.C., ed., African Basins: Amsterdam, Elsevier, p. 3985.CrossRefGoogle Scholar
Fischer, P., 1871, Note sur quelques fossiles de l’isthme de Suez: Journal de Conchyliologie, v. 3, p. 229233.Google Scholar
Fischer, P., 1880, Note sur le genre Carolia: Journal de Conchyliologie, v. 28, p. 345354.Google Scholar
Forskål, P., 1775, Descriptions animalium, quae initinere orientale Osservavit pertus Forskål Haumiae: Copenhagen, ex officina Mölleri.Google Scholar
Fourtau, R., 1900, Revision des Echinides fossiles de l’Egypte: Mémoires présentés à l’Institut Égyptien, v. 3, p. 605740 (p. 34, pl. 2, figs. 8–10).Google Scholar
Fraas, O., 1867, Aus dem Orient. Geologische Beobachtungen am Nil, auf der Sinai–Halbinsel und in Syrien: Stuttgart, Ebner and Seubert, 222 p.Google Scholar
Fraas, E., 1904, Neue Zeuglodonten aus dem unteren Mitteleocän vom Mokattam bei Cairo: Geologische und Paläontologische Abhandlungen, v. 6, p. 197220, https://doi.org/10.5962/bhl.title.39828.Google Scholar
Gingerich, P.D., 1992, Marine mammals (Cetacea and Sirenia) from the Eocene of Gebel Mokattam and Fayum, Egypt: stratigraphy, age, and paleoenvironments: University of Michigan Papers on Paleontology, no. 30, 84 p.Google Scholar
Gingerich, P.D., 2023, Wadi Al–Hitan or ‘Valley of Whales’–an Eocene World Heritage Site in the Western Desert of Egypt, in Clary, R.M., Pyle, E.J., and Andrews, W.M., eds., Geology’s Significant Sites and their Contribution to Geoheritage: Geological Society, London, Special Publications, v. 543, p. 421430, https://doi.org/10.1144/SP543-2022-203.Google Scholar
Gingerich, P.D., Antar, M.S.M., and Zalmout, I. S., 2011, Projection stratigraphy of the upper Eocene Gehannam, Birket Qarun, and Qasr el-Sagha formations and their fossil whales at the Wadi Al Hitan World Heritage Site, western Fayum Province (Egypt): Berichte der Geologischen Bundesanstalt, v. 85, n. 82.Google Scholar
Gingerich, P.D., Antar, M.S.M., and Zalmout, I.S., 2019, Aegicetus gehennae, a new late Eocene protocetid (Cetacea, Archaeoceti) from Wadi Al Hitan, Egypt, and the transition to tail-powered swimming in whales: PLoS ONE, v. 14, n. e0225391.CrossRefGoogle Scholar
Gohar, A.S., Antar, M.S., Boessenecker, R.W., Sabry, D.A., El-Sayed, S., Seiffert, E.R., Zalmout, I.S., and Sallam, H.M., 2021, A new protocetid whale offers clues to biogeography and feeding ecology in early cetacean evolution: Proceedings of the Royal Society B, v. 288, n. 20211368.CrossRefGoogle Scholar
Guiraud, R., Bosworth, W., Thierry, J., and Delplanque, A., 2005, Phanerozoic geological evolution of northern and central Africa: an overview: Journal of African Earth Sciences, v. 43, p. 83143.CrossRefGoogle Scholar
Hadi, M., Mosaddegh, H., and Abbassi, N., 2016, Microfacies and biofabric of nummulite accumulations (Bank) from the Eocene deposits of Western Alborz (NW Iran): Journal of African Earth Sciences, v. 124, p. 216233.CrossRefGoogle Scholar
Haeckel, E., 1866, Generelle Morphologie der Organismen: Allgemeine Grundzüge der organischen Formen-Wissenschaft, mechanisch begründet durch die von Charles Darwin reformierte Descendenz-Theorie: Berlin, DeGruyter, 1,031 p.CrossRefGoogle Scholar
Haq, B.U., Hardenbol, J., and Vail, P.R., 1987, Chronology of fluctuating sea level since the Triassic: Science, v. 235, p. 11561167.CrossRefGoogle Scholar
Holzmann, M., and Pawlowski, J., 2017, An updated classification of rotaliid foraminifera based on ribosomal DNA phylogeny: Marine Micropaleontology, v. 132, p. 1834.CrossRefGoogle Scholar
Hottinger, L., 1960, Recherches sur les Alvéolines du Paléocène et de l’Éocène: Mémoires suisses de Paléontologie, v. 75–76, 243 p.Google Scholar
Hottinger, L., 1997, Shallow benthic foraminiferal assemblages as signals for depth of their deposition and their limitations: Bulletin de la Société géologique de France, v. 168, p. 491505.Google Scholar
Hottinger, L., 2001, Learning from the past, in Levi-Montalcini, L., ed., Frontiers of Life: Discovery and Spoliation of the Biosphere, Volume 4: London and San Diego, Academic, p. 449477.Google Scholar
Hussein, A.M., Boukhary, M., and Kamal, D., 2004, Nummulites farisi n. sp. (Nummulites partschi group) from the Bartonian of El Basatin, Gebel Mokattam, Egypt: Revue de paléobiologie, v. 23, p. 169179.Google Scholar
Iskander, F., 1943, Geological survey of the Gharag el Sultani sheet no. 68/54: Standard Oil Company, Egypt S. A., Reports, v. 51, p. 129.Google Scholar
Issawi, B., Francis, M.H., Youssef, E.A.A., and Osman, R.A., 2009, The Phanerozoic geology of Egypt ageodynamic approach: The Egyptian Mineral Resources Authority, Cairo, Special Publication, v. 81, 589 p.Google Scholar
Jovane, L., Sprovieri, M., Florindo, F., Acton, G., Coccioni, R., Dall’Antonia, B., Dinar`es- Turell, J., 2007, Eocene–Oligocene paleoceanographic changes in the stratotype section, Massignano, Italy: clues from rock magnetism and stable isotopes: Journal of Geophysics Research: Solid Earth, v. 112, p.116, https://doi.org/10.1029/2007JB004963.Google Scholar
Kayğili, S., 2021, Reassessment of the age and depositional environment of the Kırkgeçit Formation based on larger benthic foraminifera, NW Elazığ, Eastern Turkey: Turkish Journal of Earth Sciences, v. 30, p. 580600.CrossRefGoogle Scholar
Kenawy, A.I., 1978, Nouvelles espéces de grand Foraminiferes provenant de la base de l´Eocene Superieur de la section Midawara, Province du Fayoum, Egypte: Revue de Micropaléontologie, v. 21, p. 5967.Google Scholar
Kenawy, A.I., Mohamed, H.K., and Mansour, H.H., 1993, Biostratigraphic zonation of the middle Eocene in the Nile Valley, based on larger Foraminifera: Zitteliana, v. 20, p. 301309.Google Scholar
King, C., Underwood, C., and Steurbaut, E., 2014, Eocene stratigraphy of the Wadi Al-Hitan world heritage site and adjacent areas (Fayum, Egypt): Stratigraphy, v. 11, p. 185234.CrossRefGoogle Scholar
Kövecsi, S.A., Less, G., Pleș, G., Bindiu–Haitonic, R., Briguglio, A., Papazzoni, C.A., and Silye, L., 2022, Nummulites assemblages, biofabrics and sedimentary structures: the anatomy and depositional model of an extended Eocene (Bartonian) nummulitic accumulation from the Transylvanian Basin (NW Romania): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 586, n. 110751.CrossRefGoogle Scholar
Lamarck, J.B.P.A., 1801. Systême des animaux sans vertèbres; ou, Tableau général des classes, des classes, des orres et des genres de ces animaux:, Paris, L’Auteur, 432 p.CrossRefGoogle Scholar
Lamarck, J.B.P.A., 1804, Suite des mémoires sur les fossiles des environs de Paris: Annales du Muséum national d’Histoire naturelle, v. 3, p. 436441.Google Scholar
Less, G., and Özcan, E., 2012, Bartonian–Priabonian larger benthic foraminiferal events in the Western Tethys: Austrian Journal of Earth Sciences, v. 105, p. 129140.Google Scholar
Less, G., Özcan, E., and Okay, A., 2011, Stratigraphy and larger foraminifera of the middle Eocene to lower Oligocene shallow-marine units in the northern and eastern parts of the Thrace Basin, NW Turkey: Turkish Journal of Earth Sciences, v. 20, p. 793845.Google Scholar
Leymerie, A., 1846, Statistique géologique et minéralogique du département de I’Aube, Atlas: Troyes, Laloy, 675 p.Google Scholar
Loeblich, A.R., and Tappan, H., 1988, Foraminiferal Genera and Their Classification: New York, Springer, 2031 p.CrossRefGoogle Scholar
Martín-Martín, M., Tosquella, J., Guerrera, F., Maaté, A., Hlila, R., Maaté, S., Tramontana, M., and Le Breton, E., 2023, The Eocene carbonate platforms of the Ghomaride Domain (Internal Rif Zone, N Morocco): a segment of the westernmost Tethys: Sedimentary Geology, v. 452, n. 106423.CrossRefGoogle Scholar
Mayer-Eymar, C., 1889, Diagnoses Ostrearum novarum ex agris Aegyptiae nummuliticis: Vierteljahrsschrift der Naturforschende Gesellschaft in Zürich, v. 34, p. 401408.Google Scholar
Mayer-Eymar, K., 1899, Kerunia Cornuta Mayer-Eymar: Neuclüdet, Actes de la Société d’Histoire Naturelle de la Suisse, 120 p.Google Scholar
Montfort, P., 1808, Conchyliologie systématique et classification méthodique des coquilles, v. 1: Paris, Schoell, 409 p.CrossRefGoogle Scholar
Morabito, C., Papazzoni, C.A., Lehrmann, D.J., Payne, J.L., Al-Ramadan, K., and Morsilli, M., 2024, Carbonate factory response through the MECO (Middle Eocene Climate Optimum) event: insight from the Apulia Carbonate Platform, Gargano Promontory, Italy: Sedimentary Geology, v. 461, n. 106575.CrossRefGoogle Scholar
Münster, G., 1828, Ueber die Versteinerungen aus dem feinkörnigen Thoneisenschiefer und dem grünen Sande am Kressenberge bei Braunstein in Baiern: Deutschland Geognostisch Geologisch Dargestellt und mit Charten und Durchschnittszeichnungen eridutert, v. 6, p. 93103.Google Scholar
Ogg, J.G., Ogg, G., and Gradstein, F.M., 2016, A Concise Geologic Time Scale: Amsterdam, Elsevier, 229 p.Google Scholar
Özcan, E., Okay, A.I., Bürkan, K.A., Yücel, A.O., and Özcan, Z., 2018, Middle–late Eocene marine record of the Biga Peninsula, NW Anatolia, Turkey: Geologica Acta, v. 16, p. 163187.Google Scholar
Özcan, Z., Okay, A., Özcan, E., Hakyemez, A., and Altiner, S., 2012, Late Cretaceous–Eocene geological evolution of the Pontides based on new stratigraphic and palaeontologic data between the Black Sea coast and Bursa (NW Turkey): Turkish Journal of Earth Sciences, v. 21, p. 933960.Google Scholar
Pakhnevich, A., Nikolayev, D., and Lychagina, T., 2023, Local crystallographic texture of a nummulite (foraminifera) test from the Eocene deposits of the Crimea Peninsula: Biology, v. 12, n. 1472.Google Scholar
Papazzoni, C.A., 1992, Nummulites (Foraminiferida): Eocene larger benthic assemblages in the Tethys Mediterranean: Bolletino della Società Paleontologica Italiana, v. 31, p. 229238.Google Scholar
Papazzoni, C.A., 2008, Preliminary palaeontological observations on some examples of “nummulite banks”: sedimentary or biological origin?: Rendiconti online della Società Geologica Italiana, v. 2, p. 135138.Google Scholar
Papazzoni, C.A., and Sirotti, A., 1995, Nummulite biostratigraphy at the middle/upper Eocene boundary in the northern Mediterranean area: Rivista Italiana di Paleontologia e Stratigrafia, v. 101, p. 6380.Google Scholar
Papazzoni, C.A., Ćosović, V., Briguglio, A., and Drobne, K., 2017, Towards a calibrated larger foraminifera biostratigraphic zonation: celebrating 18 years of the application of shallow benthic zones: Palaios, v. 32, n. 043.Google Scholar
Pawlowski, J., Holzmann, M., and Tyszka, J., 2013, New supraordinal classification of foraminifera: molecules meet morphology: Marine Micropaleontology, v. 100, p. 110.CrossRefGoogle Scholar
Pomar, L., Baceta, J.I., Hallock, P., Mateu–Vicens, G., and Basso, D., 2017, Reef building and carbonate production modes in the west-central Tethys during the Cenozoic: Marine and Petroleum Geology, v. 83, p. 261304.CrossRefGoogle Scholar
Racey, A., 1994, Biostratigraphy and palaeobiogeographic significance of Tertiary nummulitids (foraminifera) from northern Oman, in Simmons, M.D., ed., Micropalaeontology and Hy–drocarbon Exploration in the Middle East: London, Chapman and Hall, p. 343370.Google Scholar
Racey, A., Bailey, H.W., Beckett, D., Gallagher, L.T., Hampton, M.J., and McQuilken, J., 2001, The petroleum geology of the early Eocene El Garia Formation, Hasdrubal field, offshore Tunisia: Journal of Petroleum Geology, v. 24, p. 2953.CrossRefGoogle Scholar
Sacco, F., 1897, I molluschi dei Terreni Terziarii del Piemonte e della Liguria. Parte XXIII Pelecypoda (Ostreidae, Anomiidae e Dimyidae): Torino, C. Clausen, 67 p.Google Scholar
Said, R., 1962, The Geology of Egypt: Amsterdam and New York, Elsevier, 377 p.Google Scholar
Said, R., 1971, Explanatory Notes to Accompany the Geological Map of Egypt: Cairo, Geological Survey of Egypt, 123 p.Google Scholar
Said, R., 1990, The Geology of Egypt: Brookfield, Wisconsin, Balkema, 729 p.Google Scholar
Salem, R., 1976, Evolution of Eocene–Miocene sedimentation patterns in parts of northern Egypt: AAPG Bulletin, v. 60, p. 3464.Google Scholar
Sallam, E., Issawi, B., and Osman, R., 2015, Stratigraphy, facies, and depositional environments of the Paleogene sediments in Cairo–Suez district, Egypt: Arabian Journal of Geosciences, v. 8, p. 19391964.CrossRefGoogle Scholar
Schaub, H., 1981, Nummulites et Assilines de la Tethys Paleogene, Taxinomie, Phylogenese et Biostratigraphie: Schweizerische Paläontologische Abhandlungen, v. 104, 236 p.Google Scholar
Seddighi, M., Briguglio, A., Hohenegger, J., and Papazzoni, C.A., 2015, New results on the hydrodynamic behaviour of fossil Nummulites tests from two nummulite banks from the Bartonian and Priabonian of northern Italy: Bollettino della societa paleontologica italiana. Societa paleontologica italiana, v. 54, p. 103116.Google Scholar
Seiffert, E.R., Bown, T.M., Clyde, W.C., and Simons, E.L., 2008, Geology, paleoenvironment, and age of Birket Qarun locality 2 (BQ–2), Fayum Depression, Egypt, in Fleagle, J.G., and Gilbert, C.C., eds., Elwyn Simons: A Search for Origins, New York: Springer, p. 7186.CrossRefGoogle Scholar
Serra-Kiel, J., Hottinger, L., Caus, E., Drobne, K., Ferrandez, C., et al., 1998, Larger foraminiferal biostratigraphy of the Tethyan Paleocene and Eocene: Bulletin de la Société géologique de France, v. 169, p. 281299.Google Scholar
Sestini, G., 1984, Tectonic and sedimentary history of the NE African margin (Egypt–Libya): Geological Society, London, Special Publications, v. 17, p. 161175.CrossRefGoogle Scholar
Shamah, K., 1981, Le Paleogene de la province du Fayoum, Egypte [Ph.D. dissertation]: Paris, Al’Universite Pireer et Mari Curie, 383 p.Google Scholar
Silva-Casal, R., Serra-Kiel, J., Rodríguez-Pintó, A., Pueyo, L.E., Aurell, M., and Payros, A., 2021, Systematics of Lutetian larger foraminifera and magneto-biostratigraphy from the South Pyrenean Basin (Sierras Exteriores, Spain): Geologica Acta, v. 19, p. 164.CrossRefGoogle Scholar
Smith, A.G., 1971, Alpine deformation and the oceanic areas of the Tethys, Mediterranean, and Atlantic: Geological Society of America Bulletin, v. 82, p. 20392070.CrossRefGoogle Scholar
Sowerby, J., and Sowerby, J. de C., 1823, The Mineral Conchology of Great Britain: London, W. B. Meredith, 7 Volumes; pls 1–383 (1812–1822) by J. Sowerby, pls, p. 384–648.Google Scholar
Strougo, A., 1977, Carolia lefevrei Fischer, 1880 (Rivalvia, Anomiidae): Bulletin du Museum National d’Histoire Naturelle, v. 486, p. 229244.Google Scholar
Strougo, A., 1983, The genus Carolia (Bivalvia: Anomiidae) in the Egyptian Eocene—Shallow Tethys, International Symposium, Padova, 1982: Bollettino della Società Paleontologica Italiana, v. 22, p. 119126.Google Scholar
Strougo, A., 1985a, Eocene stratigraphy of the Giza Pyramids plateau. Cairo: Ain Shams University, Middle East Research Center, Science Research Series, v. 5, p. 7999.Google Scholar
Strougo, A., 1985b, Additions to the Eocene bivalve of Egypt: Neues Jahrbuch für Geologie und Paläontologie, v. 170, p. 359384.CrossRefGoogle Scholar
Strougo, A., 2008, The Mokattamian Stage: 125 years later: Middle East Research Center Ain Shams University, Earth Science Series, v. 22, p. 47108.Google Scholar
Strougo, A., and Abd-Allah, A.M., 1990, Mokattamian stratigraphy of northcentral Eastern Desert (south of Maadi-Qattamiya Road): Middle East Research Center Ain Shams University, Earth Science Series, v. 4, p. 152175.Google Scholar
Strougo, A., Faris, M., Haggag, M., Abul-Nasr, R., and Gingerich, P.D., 2013, Planktonic foraminifera and calcareous nannofossil biostratigraphy through the middle to late Eocene transition at Wadi Hitan, Fayum Province, Egypt: University of Michigan Contributions from the Museum of Paleontology, v. 32, p. 111138.Google Scholar
Tellini, A., 1890, Le nummulitidi della Majella delle Isole Tremiti e del Promontorio garganico: Bollettino della Societá Geologica Italiana, v. 9, p. 359422.Google Scholar
van der Ploeg, E.K., Krabbendam, L., Vroman, H., van Nimwegen, M., de Bruijn, M.J., et al., 2023, Type–2 CD8+ T–cell formation relies on interleukin–33 and is linked to asthma exacerbations: Nature Communications, v. 14, n. 5137.Google Scholar
White, CA, 1879, Report on the paleontological fieldwork for the season of 1877, in Hayden, F.V., ed., 11th Annual Report of the USGS: Washington, D.C., Government Printing Office, p. 161272.Google Scholar
Zachos, J.C., Pagani, M., Sloan, L., Thomas, E., and Billups, K., 2001, Trends, rhythms, and aberrations in global climate: 65 Ma to present: Science, v. 292, p. 686693.CrossRefGoogle Scholar
Zalmout, I.S., and Gingerich, P.D., 2012, Late Eocene sea cows (Mammalia, Sirenia) from Wadi Al Hitan in the Western Desert of Fayum, Egypt: University of Michigan Papers on Paleontology, v. 37, 158 p.Google Scholar