Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T00:53:48.817Z Has data issue: false hasContentIssue false

Dielectric and Mechanical Loading Effects of a Fluid on Lamb Waves Propagating in an Immersed Piezoelectric Plate

Published online by Cambridge University Press:  05 May 2011

C.-H. Yang*
Affiliation:
Department of Mechanical Engineering, Chang Gung University, Kwei-Shan, Taoyuan, Taiwan 333, R. O. C.
Y.-A. Lai*
Affiliation:
Department of Mechanical Engineering, Chang Gung University, Kwei-Shan, Taoyuan, Taiwan 333, R. O. C.
*
* Associate Professor
** Graduate student
Get access

Abstract

This research is focused on exploring the fluid loading effects on the dispersion curves of Lamb modes propagating in a piezoelectric plate. A theoretical treatment based on a partial wave analysis is developed to model the dispersion curves of Lamb modes propagating in an X-LiNbO3 plate loaded by a fluid with combined mechanical/dielectric properties. In particular, the mode-shifting characteristics caused by the fluid loading as a function of the propagation orientation are illustrated with numerical examples. Finally, for the case of water as an immersing fluid, individual attributions of the mechanical and dielectric loading effects causing the mode-shifting are analyzed. It is found that the dielectric loading effect dominates the mode-shifting while the mechanical density loading can be neglected while Lamb waves propagate in an X-LiNbO3 plate immersing in water. The current results provides useful information for the applications of acoustic plate mode (APM) devices used in liquid sensor applications.

Type
Articles
Copyright
Copyright © The Society of Theoretical and Applied Mechanics, R.O.C. 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Josse, F., Shana, Z. A., Radtke, D. E. and Haworth, D. T., “Analysis of Piezoelectric Bulk-Acoustic-Wave Resonators as Detectors in Viscous Conductive Liquids,” IEEE Trans. Ultrason., Ferroelect. Freq. Contr., 37(5), pp. 359367 (1990).CrossRefGoogle ScholarPubMed
2.Joshi, S. G. and Jin, Y., ‘Application of a Surface-Acoustic-Wave Device for Measurement of Liquid Flow Rate,” IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 37(5), pp. 474478 (1990).CrossRefGoogle ScholarPubMed
3.Kelkar, U. R., Liew, Su-Lin, Shana, Z. A., Haworth, D. T., Grunze, M. and Josse, F., ‘Applications of Lithium Niobáte Acoustic Plate Mode as Sensor for Conductive Liquids,” IEEE 1990 Ultrason. Symp., pp. 285288 (1990).Google Scholar
4.Josse, F., Haworth, D. T., Kellar, U. R. and Shana, Z. A., “LiNbO3 Acoustic Plate Mode Sensor for Dilute Ionic Solutions,” Electron. Lett., 26, pp. 834837 (1990).CrossRefGoogle Scholar
5.Josse, F., Shana, Z. A., Haworth, D. T., Liew, S. and Grunze, M., “On the Use of ZX-LiNbO3 Acoustic Plate Mode Devices as Detectors for Dilute Electrolytes,” Sensors and Actuators B, 9, pp. 97102 (1992).CrossRefGoogle Scholar
6.Josse, F., Andle, J. C., Vetelino, J. F., Dahint, R. and Grunze, M., “Theoretical and Exprimental Study of Mass Sensitivity of PSAW-APMs on ZX-LiNbO3,” IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 42(4), pp. 517524 (1995).CrossRefGoogle Scholar
7.Sawaguchi, A. and Toda, K., “System for Measuring Sound Velocity in Liquid Using Leaky Lamb Wave Modes 1280 Rot. X-Y Cut LiNbO3 Substrate,” Jpn. J. Appl. Phys., 38(9B), pp. 24022405 (1991).CrossRefGoogle Scholar
8.Nomura, T., Yasuda, T. and Furukawa, S.Humidity Sensor Using Surface Acoustic Waves Propagating along Polymer/LiNbO3 Structures,” IEEE Ultrason. Symp., pp. 417420 (1993).CrossRefGoogle Scholar
9.Sugizaki, G., Takenaka, T., Sakata, K. and Toda, K., “Lamb Wave Device Using PbZrO3-Based Ceramic Substrate,” Int. J. Electronics, 73(6), pp. 13471354 (1992).CrossRefGoogle Scholar
10.Nayfeh, A. H. and Chien, H. T., “The Influence of Piezoelectricity on Free and Reflected Waves from Fluid-Loaded Anisotropie Plates,” J. Acous. Soc. Am., 91(3), pp. 12501261 (1992).CrossRefGoogle Scholar
11.Yang, C. H. and Chimenti, D. E., “Guided Plate Waves Propagating in a Piezoelectric Plate Immersed in a Dielectric Fluid,” Appl. Phys. Lett., 63, pp. 13281330 (1993).CrossRefGoogle Scholar
12.Yang, C. H. and Chimenti, D. E., “Guided Plate Waves Propagating in a Piezoelectric Plate Immersed in a Dielectric Fluid I. Theory,” J. Acous. Soc Am., 97(4), pp. 21032109 (1995).CrossRefGoogle Scholar
13.Yang, C. H. and Huang, M. F., “A Study on the Dispersion Relations of Lamb Waves Propagating along LiNbO3 Plate with a Laser Ultrasound Technique,” Jpn. J. Appl. Phys., 41, pp. 64786483 (2002).CrossRefGoogle Scholar
14.Josse, F. and Shana, Z. A., “Electrical Surface Perturbation of a Piezoelectric Acoustic Plate Mode by a Conductive Liquid Loading,” IEEE Trans. Ultrason. Ferroelec. Freq. Control, 39(4), pp. 512518 (1992).CrossRefGoogle ScholarPubMed
15.Sawaguchi, A. and Toda, K., “Lamb Wave Propagation Characteristics on Water-Loaded LiNbO3 Thin Plate,” Jpn. J. Appl. Phys., 32(5B), pp. 23892391 (1993).Google Scholar
16.Toda, K. and Sawaguchi, A., “Propagation Characteristics of Shear-Horizontal Plate Modes on Water-Loaded LiNbO3,” Jpn. J. Appl. Phys., 33(5B), pp. 29492952 (1994).CrossRefGoogle Scholar
17.Farnell, G. W., “Symmetry Considerations for Elastic Layer Modes Propagating in Anisotropie Piezoelectric Crystals,” IEEE Trans. Sonics and Ultras., SU-17(4), pp. 229238 (1970).CrossRefGoogle Scholar
18.Dickey, J., Maidanik, G. and Uberali, H., “The Splitting of Dispersion Curves for the Fluid-Loaded Plate,” J. Acoust. Soc. Am., 98(4), pp. 23652368 (1995).CrossRefGoogle Scholar
19.Auld, B. A., Acoustic Fields and Waves in Solids, Robert E. Krieger Publishing Company, Florida (1990).Google Scholar