Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T14:39:47.896Z Has data issue: false hasContentIssue false

Structural Characteristic Length in Metallic Glasses

Published online by Cambridge University Press:  20 January 2020

F. A. Akçay*
Affiliation:
Gemi İnşaatı ve Deniz Bilimleri Fakültesi, İstanbul Teknik Üniversitesi, İstanbul, Turkey
*
*Corresponding author (akcayfu@itu.edu.tr, +90 (212) 285 64 27)
Get access

Abstract

Fracture of materials at the microscopic level involves a characteristic length related to microstructure. However, a clear structure-property relationship is still absent in metallic glasses. Therefore, a physics-based expression is derived for the characteristic length (relevant to brittle fracture) in metallic glasses (MGs) in order to link the microscopic material features controlling the fracture process to the macroscopic material parameters. The derived characteristic length is associated to micro/nano structural fracture patterns, critical crack tip opening displacement as well as fracture toughness. Characteristic lengths of various metallic glasses are determined using the proposed expression and compared to the experimental results. Theoretical results are in very good agreement with the experimental results of various metallic glasses. Furthermore, the contribution of characteristic length as well as macroscopic material parameters such as Poisson’s ratio, yield strength, and Young’s modulus on fracture toughness (and fracture energy) is investigated and compared to the experimental results.

Type
Research Article
Copyright
Copyright © 2020 The Society of Theoretical and Applied Mechanics

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Jia, H., Wang, G., Chen, S., Gao, Y., Li, W. and Liaw, P. K., “Fatigue and fracture behavior of bulk metallic glasses and their composites”, Progress in Materials Science, 98, pp. 168248 (2018).CrossRefGoogle Scholar
Schroers, J., “Bulk metallic glasses”, Physics Today, 66, pp. 3237 (2013).CrossRefGoogle Scholar
Ward, L., Agrawal, A., Choudhary, A. and Wolverton, C., “A general-purpose machine learning framework for predicting properties of inorganic materials”, npj Computational Materials, 2, pp. 16028 (2016).CrossRefGoogle Scholar
Ren, F., Ward, L., Williams, T., Laws, K. J., Wolverton, C., Hattrick-Simpers, J. and Mehta, A., “Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments”, Science Advances, 4, pp. eaaq1566 (2018).CrossRefGoogle ScholarPubMed
Rittel, D. and Rosakis, A. J., “Dynamic fracture of berylium-bearing bulk metallic glass systems: A cross-technique comparison”, Engineering Fracture Mechanics, 72, pp. 19051919 (2005).CrossRefGoogle Scholar
Fan, S., Jiang, C., Lu, H., Li, F., Yang, Y., Shen, Y. and Lu, Y., “In situ micromechanical characterization of metallic glass microwires under torsional loading”, Experimental Mechanics, 59, pp. 361368 (2019).CrossRefGoogle Scholar
Inoue, A. and Takeuchi, A., “Recent development and application products of bulk glassy alloys”, Acta Materialia, 59, pp. 22432267 (2011).CrossRefGoogle Scholar
Kruzic, J. J., “Bulk metallic glasses as structural materials: A review”, Advanced Engineering Materials, 18, pp. 13081331 (2016).CrossRefGoogle Scholar
Hufnagel, T. C., Schuh, C. A. and Falk, M. L., “Deformation of metallic glasses: Recent developments in theory, simulations, and experiments”, Acta Materialia, 109, pp. 375393 (2016).CrossRefGoogle Scholar
Khademian, N., “Transition of nano-scale to micro-scale on fracture surface of Zr65Cu17.5Ni10Al7.5 bulk metallic glass”, Engineering Fracture Mechanics, 105, pp. 101109 (2013).CrossRefGoogle Scholar
Lewandowski, J. J., Wang, W. H. and Greer, A. L., “Intrinsic plasticity or brittleness of metallic glasses”, Philosophical Magazine Letters, 85, pp. 7787 (2005).CrossRefGoogle Scholar
Kumar, G., Prades-Rodel, S., Blatter, A. and Schroers, J., “Unusual brittle behavior of Pd-based bulk metallic glass”, Scripta Materialia, 65, pp. 585587 (2011).CrossRefGoogle Scholar
Madge, S. V., Louzguine-Luzgin, D. V., Lewandowski, J. J. and Greer, A. L., “Toughness, extrinsic effects and Poisson’s ratio of bulk metallic glasses”, Acta Materialia, 60, pp. 48004809 (2012).CrossRefGoogle Scholar
Argon, A. S. and Salama, M., “The mechanism of fracture in glassy materials capable of some inelastic deformation”, Materials Science and Engineering, 23, pp. 219230 (1976).CrossRefGoogle Scholar
Wang, G., Zhao, D. Q., Bai, H. Y., Pan, M. X., Xia, A. L., Han, B. S., Xi, X. K., Wu, Y. and Wang, W. H., “Nanoscale periodic morphologies on the fracture surface of brittle metallic glasses”, Physical Review Letters, 98, pp. 235501 (2007).CrossRefGoogle ScholarPubMed
Murali, P., Guo, T. F., Zhang, Y. W., Narasimhan, R., Li, Y. and Gao, H. J., “Atomic scale fluctuations govern brittle fracture and cavitation behavior in metallic glasses”, Physical Review Letters, 107, pp. 215501 (2011).CrossRefGoogle ScholarPubMed
Murali, P., Narasimhan, R., Guo, T. F., Zhang, Y. W. and Gao, H. J., “Shear bands mediate cavitation in brittle metallic glasses”, Scripta Materialia, 68, pp. 567570 (2013).CrossRefGoogle Scholar
Li, W., Gao, Y. and Bei, H., “On the correlation between microscopic structural heterogeneity and embrittlement behavior in metallic glasses”, Scientific Reports, 5, pp. 14786 (2015).CrossRefGoogle ScholarPubMed
Schuh, C. A., Hufnagel, T. C. and Ramamurty, U., “Mechanical behavior of amorphous alloys”, Acta Materialia, 55, pp. 40674109 (2007).CrossRefGoogle Scholar
Xu, J., Ramamurty, U. and Ma, E., “The fracture toughness of bulk metallic glasses”, JOM, 62, pp. 1018 (2010).CrossRefGoogle Scholar
Sun, B. A. and Wang, W. H., “The fracture of bulk metallic glasses”, Progress in Materials Science, 74, pp. 211307 (2015).CrossRefGoogle Scholar
Gludovatz, B., Naleway, S. E., Ritchie, R. O. and Kruzic, J. J., “Size-dependent fracture toughness of bulk metallic glasses”, Acta Materialia, 70, pp. 198207 (2014).CrossRefGoogle Scholar
Launey, M. E., Hofmann, D. C., Suh, J. Y., Kozachkov, H., Johnson, W.L. and Ritchie, R. O., “Fracture toughness and crack-resistance curve behavior in metallic glass-matrix composites”, Applied Physics Letters, 94, pp. 241910 (2009).CrossRefGoogle Scholar
Madge, S. V., “Toughness of bulk metallic glasses”, Metals, 5, pp. 12791305 (2015).CrossRefGoogle Scholar
Ritchie, R. O., Schroeder, V. and Gilbert, C. J., “Fracture, fatigue and environmentally-assisted failure of a Zr-based bulk amorphous metal”, Intermetallics, 8, pp. 469475 (2000).CrossRefGoogle Scholar
Geissler, D., Freudenberger, J., Wendrock, H., Zimmermann, M. and Gebert, A., “On sample size effects in fracture toughness determination of bulk metallic glasses”, Engineering Fracture Mechanics, 202, pp. 500507 (2018).CrossRefGoogle Scholar
Xi, X. K., Zhao, D. Q., Pan, M. X., Wang, W. H., Wu, Y. and Lewandowski, J. J., “Fracture of brittle metallic glasses: Brittleness or plasticity”, Physical Review Letters, 94, pp. 125510 (2005).CrossRefGoogle ScholarPubMed
Wang, W. H., “The elastic properties, elastic models and elastic perspectives of metallic glasses”, Progress in Materials Science, 57, pp. 487656 (2012).CrossRefGoogle Scholar
Akçay, F. A., “Theoretical prediction of fracture of initially crack-free brittle materials”, Procedia Structural Integrity, 13, pp. 16951701 (2018).CrossRefGoogle Scholar
Karr, D. G. and Akçay, F. A., “A criterion for ductile fracture based on continuum modeling of energy release rates”, International Journal of Fracture, 197, pp. 201212 (2016).CrossRefGoogle Scholar
Anderson, T. L., Fracture mechanics: Fundamentals and applications, 3rd edition, CRC Press, Boca Raton (2005).CrossRefGoogle Scholar
Inoue, A., “Bulk amorphous and nanocrystalline alloys with high functional properties”, Materials Science and Engineering: A, 304, pp. 110 (2001).Google Scholar
Wang, W. H., “Elastic moduli and behaviors of metallic glasses”, Journal of Non-Crystalline Solids, 351, pp. 14811485 (2005).CrossRefGoogle Scholar
Yuan, C. C. and Xi, X. K., “On the correlation of Young’s modulus and the fracture strength of metallic glasses”, Journal of Applied Physics, 109, pp. 033515 (2011).CrossRefGoogle Scholar
Conner, R.D., Rosakis, A.J., Johnson, W. L. and Owen, D. M., “Fracture toughness determination for a beryllium-bearing bulk metallic glass, Scripta Materialia, 37, pp. 13731378 (1997).CrossRefGoogle Scholar
Davis, L. A. and Yeow, Y.T., “Flow and fracture of a Ni-Fe metallic glass”, Journal of Materials Science, 15, pp. 230236 (1980).CrossRefGoogle Scholar
Davis, L. A., Mechanical responses of metallic glasses (In Glass… Current Issues), Springer, Dordrecht, pp. 94124 (1985).Google Scholar
Shek, C. H., Lin, G. M., Lee, K. L. and Lai, J. K. L, “Fractal fracture of amorphous Fe46Ni32V2Si14B6 alloy”, Journal of Non-Crystalline Solids, 224, pp. 244248 (1998).CrossRefGoogle Scholar
Davis, L. A., “Fracture toughnesses of metallic glasses”, Metallurgical Transactions A, 10, pp. 235240 (1979).CrossRefGoogle Scholar
Nagendra, N., Ramamurty, U., Goh, T. T. and Li, Y., “Effect of crystallinity on the impact toughness of a La-based bulk metallic glass”, Acta Materialia, 48, pp. 26032615 (2000).CrossRefGoogle Scholar
Zhang, T. and Inoue, A., “Ti-based amorphous alloys with a large supercooled liquid region”, Materials Science and Engineering: A, 304, pp. 771774 (2001).CrossRefGoogle Scholar
Kimura, H. and Masumoto, T., “Deformation and fracture of an amorphous Pd–Cu–Si alloy in V-notch bending tests—II: Ductile-brittle transition”, Acta Metallurgica, 28, pp. 16771693 (1980).CrossRefGoogle Scholar
Wesseling, P., Nieh, T. G., Wang, W. H. and Lewandowski, J. J., “Preliminary assessment of flow, notch toughness, and high temperature behavior of Cu60Zr20Hf10Ti10 bulk metallic glass”, Scripta Materialia, 51, pp. 151154 (2004).CrossRefGoogle Scholar
Jia, P., Zhu, Z. D., Ma, E. and Xu, J., “Notch toughness of Cu-based bulk metallic glasses”, Scripta Materialia, 61, pp. 137140 (2009).CrossRefGoogle Scholar
Flores, K. M. and Dauskardt, R. H., “Fracture and deformation of bulk metallic glasses and their composites”, Intermetallics, 12, pp. 10251029 (2004).CrossRefGoogle Scholar
Li, W., Bei, H., Tong, Y., Dmowski, W. and Gao, Y. F., “Structural heterogeneity induced plasticity in bulk metallic glasses: From well-relaxed fragile glass to metal-like behavior”, Applied Physics Letters, 103, pp. 171910 (2013).CrossRefGoogle Scholar
Kawashima, A., Kurishita, H., Kimura, H., Zhang, T. and Inoue, A., “Fracture toughness of Zr55Al10Ni5Cu30 bulk metallic glass by 3-point bend testing”, Materials Transactions, 46, pp. 17251732 (2005).CrossRefGoogle Scholar
Li, B., “Effect of imprinting process on fracture behavior of a Zr-based bulk metallic glass”, M.Sc. Thesis, Material Science Program, Oregon State University, Oregon, U.S.A. (2015).Google Scholar
Ritchie, R. O., Knott, J. F., Rice, J. R., “On the relationship between critical tensile stress and fracture toughness in mild steel”, Journal of the Mechanics and Physics of Solids, 21, pp. 395410 (1973).CrossRefGoogle Scholar