Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T00:42:57.299Z Has data issue: false hasContentIssue false

Numerical Methods for the Photoelastic Technique using Phase Shifting

Published online by Cambridge University Press:  11 August 2015

C. A. Magalhaes
Affiliation:
Coordenacoes das Engenharias, Centro Universitario Newton Paiva, Belo Horizonte, Brazil Departamento de Engenharia Mecanica, Pontifícia Universidade Católica de Minas Gerais, Belo Horizonte, Brazil
P. S. Neto
Affiliation:
Departamento de Engenharia Mecanica, Pontifícia Universidade Católica de Minas Gerais, Belo Horizonte, Brazil
P. A. A. Magalhaes Jr.*
Affiliation:
Departamento de Engenharia Mecanica, Pontifícia Universidade Católica de Minas Gerais, Belo Horizonte, Brazil
C. S. de Barcellos
Affiliation:
Departamento de Engenharia Mecanica, Univesidade Federal de Santa Catarina, Florianópolis, Brazil
*
* Corresponding author (pamerico@pucminas.br)
Get access

Abstract

The objective of this research is to find new equations for a novel phase-shifting method in digital photoelasticity. Some innovations are proposed. In terms of phase-shifting, only the analyzer is rotated, and the other equations are deduced by applying a new numerical technique instead of the usual algebraic techniques. This approach can be used to calculate a larger sequence of images. Each image represents a pattern and a measurement of the stresses present in the object. A reduction in the difference between the theoretical and experimental values of stresses was obtained by increasing the number of images in the equations for calculating phase. Every photographic image has errors and random noise, but the uncertainties due to these effects can be reduced with a larger number of observations.

Type
Research Article
Copyright
Copyright © The Society of Theoretical and Applied Mechanics, R.O.C. 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Asundi, A. K., MATLAB for Photomechanics — A Primer, Elsevier Science, p. 67 (2002).CrossRefGoogle Scholar
2.Asundi, A. K., Tong, L. and Boay, C. G., “Determination of Isoclinic and Isochromatic Parameters Using the Three-Load Method,” Measurement Science and Technology, 11, pp. 532544 (2000).Google Scholar
3.Ramesh, K., “Digital Photoelasticity,” Measurement Science and Technology, 11, p. 1826, doi:10.1088/0957-0233/11/12/704 (2000).Google Scholar
4.Chen, T. Y., Lee, H. L. and Chou, Y. C., “An Improved Two-Load Method for Whole-Field Complete Photoelastic Fringe Analysis,” Journal of Mechanics, 21, pp. 199203, doi: http://dx.doi.org/10.1017/S1727719100000630 (2005).Google Scholar
5.Yao, X. F., Jian, L. H., Xu, W., Jin, G. C. and Yeh, H. Y., “Digital Shifting Photoelasticity with Optical Enlarged Unwrapping Technology for Local Stress Measurement,” Optics & Laser Technology, 37, pp. 582589 (2009).Google Scholar
6.Chang, C. W., Chen, P. H. and Lien, H. S., “Separation of Photoelastic Principal Stresses by Analytical Evaluation and Digital Image Processing,” Journal of Mechanics, 25, pp. 1925, doi: http://dx.doi.org/10.1017/S1727719100003567 (2009).CrossRefGoogle Scholar
7.Baek, T. H., Kim, M. S., Morimoto, Y. and Fujigaki, M., “Separation of Isochromatics and Isoclinics from Photoelastic Fringes in a Circular Disk by Phase Measuring Technique,” KSME International Journal, 16, pp. 175181 (2002).CrossRefGoogle Scholar
8.Collett, E., Field Guide to Polarization, SPIE Press, Bellingham, Washington, U.S. (2005).Google Scholar
9.Ng, T. W., “Derivation of Retardation Phase in Computer-Aided Photoelasticity by Using Carrier Fringe Phase Shifting,” Applied Optics, 36, pp. 82598263 (1997).CrossRefGoogle ScholarPubMed
10.Oh, J. T. and Kim, S. W., “Polarization-Sensitive Optical Coherence Tomography for Photoelasticity Testing of Glass/Epoxy Composites,” Optics Express, 11, pp. 16691676 (2003).Google Scholar
11.Magalhaes, P. A. A., Neto, P. S. and Barcellos, C. S., “Analysis of Shadow Moire Technique with Phase Shifting Using Generalisation of Carre Method,” Strain, 47, pp. e555e571, doi: 10.1111/j.1475–1305.2009.00655.x (2011).Google Scholar
12.Arellano, N. I. T., Zurita, G. R., Fabian, C. M. and Castillo, J. F. V., “Phase Shifts in the Fourier Spectra of Phase Gratings and Phase Grids: An Application for One-Shot Phase-Shifting Interferometry,” Optics Express, 16, pp. 1933019341 (2008).Google Scholar
13.Estrada, J. C., Servin, M. and Quiroga, J. A., “Noise Robust Linear Dynamic System for Phase Unwrapping and Smoothing,” Optics Express, 19, pp. 51265133 (2011).Google Scholar
14.Navarro, M. A., Estrada, J. C., Servin, M., Quiroga, J. A. and Vargas, J., “Fast Two-Dimensional Simultaneous Phase Unwrapping and Low-Pass Filtering,” Optics Express, 20, pp. 25562561 (2012).Google Scholar
15.Ramji, M. and Ramesh, K., “Whole Field Evaluation of Stress Components in Digital Photoelasticity — Issues, Implementation and Application,” Optics and Lasers in Engineering, 46, pp. 257271 (2008).Google Scholar
16.Ramji, M. and Ramesh, K., “Stress Separation in Digital Photoelasticity, Part A — Photoelastic Data Unwrapping and Smoothing,” Aerospace Science and Technology, 60, pp. 515 (2008).Google Scholar
17.Ramji, M. and Ramesh, K., “Stress Separation in Digital Photoelasticity, Part B — Whole Field Evaluation of Stress Components,” Aerospace Science and Technology, 60, pp. 1625 (2008).Google Scholar
18.Pinit, P. and Umezaki, E., “Digitally Whole-Field Analysis of Isoclinic Parameter in Photoelasticity by Four-Step Color Phase Shifting Technique,” Optics and Laser in Engineering, 45, pp. 795807 (2007).Google Scholar
19.Ashokan, K. and Ramesh, K., “Finite Element Simulation of Isoclinic and Isochromatic Phasemaps for Use in Digital Photoelasticity,” Experimental Techniques, 33, pp. 3844 (2009).Google Scholar
20.Ramesh, K., Digital Photoelasticity: Advanced Techniques and Applications, Springer-Verlag, Berlin, Germany, pp. 165178 (2000).Google Scholar
21.Patterson, E. A. and Wang, Z. F., “Towards Full Field Automated Photoelastic Analysis of Complex Components,” Strain, 27, pp. 4957 (1991).Google Scholar
22.Ramji, M. and Prasath, R. G. R., “Sensitivity of Isoclinic Data Using Various Phase Shifting Techniques in Digital Photoelasticity Towards Generalized Error Sources,” Optics and Lasers in Engineering, 49, pp. 11531167 (2011).Google Scholar
23.Chang, S. H. and Wu, H. H. P., “Improvement of Digital Photoelasticity Based on Camera Response Function,” Applied Optics, 50, pp. 52635270 (2011).Google Scholar
24.Ajovalasit, A., Petrucci, G. and Scafidi, M., “RGB Photoelasticity Applied to the Analysis of Membrane Residual Stress in Glass,” Measurement Science and Technology, 23, p. 025601, doi:10.1088/0957-0233/23/2/025601 (2012).Google Scholar
25.Buckberry, C. and Towers, D., “Automatic Analysis of Isochromatic and Isoclinic Fringes in Photoelasticity Using Phase Measuring Techniques,” Measurement Science and Technology, 6, p. 1227 doi:10.1088/0957-0233/6/9/001 (1995).Google Scholar
26.Quiroga, J. A. and Cano, A. G., “Automatic Determination of Isostatics in Two-Dimensional Photoelasticity,” Measurement Science and Technology, 11, p. 259, doi:10.1088/0957-0233/11/3/313 (2000).Google Scholar