Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T21:56:39.280Z Has data issue: false hasContentIssue false

Yttria-stabilized hafnia: Thermochemistry of formation and hydration of nanoparticles

Published online by Cambridge University Press:  02 March 2012

Wei Zhou
Affiliation:
Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California–Davis, Davis, California 95616
Sergey V. Ushakov
Affiliation:
Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California–Davis, Davis, California 95616
Alexandra Navrotsky*
Affiliation:
Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California–Davis, Davis, California 95616
*
a)Address all correspondence to this author. e-mail: anavrotsky@ucdavis.edu
Get access

Abstract

The surface enthalpy of yttria-stabilized hafnia (YSH) (YxHf1 − xO2 − x/2) with different compositions was directly measured by a combination of high-temperature oxide-melt solution calorimetry and water adsorption calorimetry. The surface enthalpies for hydrated surfaces are 0.27 ± 0.06 J/m2 for x = 0.1, 0.77 ± 0.09 J/m2 for x = 0.17, and 1.30 ± 0.09 J/m2 for x = 0.24; and those for anhydrous surfaces are 0.51 ± 0.06, 1.08 ± 0.13, and 1.76 ± 0.09 J/m2 respectively. The enthalpies of both hydrated and anhydrous surfaces increase approximately linearly (R2 > 0.93) with increasing yttrium concentration. The surface enthalpies of Y0.1Hf0.9O1.95 were used to approximate those for pure anhydrous cubic hafnia. Combining the data relating to surface energies for monoclinic hafnia from our previous work and estimated data for tetragonal hafnia, a tentative stability map of HfO2 polymorphs as a function of surface area (SA) was constructed.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Luo, X., Zhou, W., Ushakov, S.V., Navrotsky, A., and Demkov, A.A.: Monoclinic to tetragonal transformations in hafnia and zirconia: A combined calorimetric and density functional study. Phys. Rev. B 80, 134119 (2009).Google Scholar
2.Wang, C., Zinkevich, M., and Aldinger, F.: The zirconia-hafnia system: DTA measurements and thermodynamic calculations. J. Am. Ceram. Soc. 89, 3751 (2006).CrossRefGoogle Scholar
3.Curtis, C.E., Doney, L.M., and Johnson, J.R.: Some properties of hafnium oxide, hafnium silicate, calcium hafnate, and hafnium carbide. J. Am. Ceram. Soc. 37, 458 (1954).CrossRefGoogle Scholar
4.Stacy, D.W. and Wilder, D.R.: The yttria-hafnia system. J. Am. Ceram. Soc. 58, 285 (1975).CrossRefGoogle Scholar
5.Luo, X., Demkov, A.A., Triyoso, D., Fejes, P., Gregory, R., and Zollner, S.: Combined experimental and theoretical study of thin hafnia films. Phys. Rev. B 78, 245314 (2008).CrossRefGoogle Scholar
6.Kim, H., McIntyre, P.C., and Saraswat, K.C.: Effects of crystallization on the electrical properties of ultrathin HfO2 dielectrics grown by atomic layer deposition. Appl. Phys. Lett. 82, 106 (2003).Google Scholar
7.Aarik, J., Aidla, A., Mandar, H., Uustare, T., Kukli, K., and Schuisky, M.: Phase transformations in hafnium dioxide thin films grown by atomic layer deposition at high temperatures. Appl. Surf. Sci. 173, 15 (2001).Google Scholar
8.Shandalov, M. and McIntyre, P.C.: Size-dependent polymorphism in HfO2 nanotubes and nanoscale thin films. J. Appl. Phys. 106, 084322 (2009).Google Scholar
9.Aarik, J., Aidla, A., Mandar, H., Sammelselg, V., and Uustare, T.: Texture development in nanocrystalline hafnium dioxide thin films grown by atomic layer deposition. J. Cryst. Growth 220, 105 (2000).Google Scholar
10.Ranade, M.R., Navrotsky, A., Zhang, H.Z., Banfield, J.F., Elder, S.H., Zaban, A., Borse, P.H., Kulkarni, S.K., Doran, G.S., and Whitfield, H.J.: Energetics of nanocrystalline TiO2. Proc. Natl. Acad. Sci. U.S.A. 99, 6476 (2002).Google Scholar
11.Levchenko, A.A., Li, G.S., Boerio-Goates, J., Woodfield, B.F., and Navrotsky, A.: TiO2 stability landscape: Polymorphism, surface energy, and bound water energetics. Chem. Mater. 18, 6324 (2006).CrossRefGoogle Scholar
12.McHale, J.M., Auroux, A., Perrotta, A.J., and Navrotsky, A.: Surface energies and thermodynamic phase stability in nanocrystalline aluminas. Science 277, 788 (1997).Google Scholar
13.McHale, J.M., Navrotsky, A., and Perrotta, A.J.: Effects of increased surface area and chemisorbed H2O on the relative stability of nanocrystalline gamma-Al2O3 and alpha-Al2O3. J. Phys. Chem. B 101, 603 (1997).Google Scholar
14.Bomati-Miguel, O., Mazeina, L., Navrotsky, A., and Veintemillas-Verdaguer, S.: Calorimetric study of maghemite nanoparticles synthesized by laser-induced pyrolysis. Chem. Mater. 20, 591 (2008).Google Scholar
15.Mazeina, L. and Navrotsky, A.: Surface enthalpy of goethite. Clays Clay Miner. 53, 113 (2005).CrossRefGoogle Scholar
16.Pitcher, M.W., Ushakov, S.V., Navrotsky, A., Woodfield, B.F., Li, G.S., Boerio-Goates, J., and Tissue, B.M.: Energy crossovers in nanocrystalline zirconia. J. Am. Ceram. Soc. 88, 160 (2005).Google Scholar
17.Radha, A.V., Bomati-Miguel, O., Ushakov, S.V., Navrotsky, A., and Tartaj, P.: Surface enthalpy, enthalpy of water adsorption, and phase stability in nanocrystalline monoclinic zirconia. J. Am. Ceram. Soc. 92, 133 (2009).Google Scholar
18.Navrotsky, A.: Progress and new directions in high temperature calorimetry revisited. Phys. Chem. Miner. 24, 222 (1997).CrossRefGoogle Scholar
19.Zhou, W., Ushakov, S.V., Wang, T., Ekerdt, J.G., Demkov, A.A., and Navrotsky, A.: Hafnia: Energetics of thin films and nanoparticles. J. Appl. Phys. 107, 123514 (2010).CrossRefGoogle Scholar
20.Ushakov, S.V. and Navrotsky, A.: Direct measurements of water adsorption enthalpy on hafnia and zirconia. Appl. Phys. Lett. 87, 3 (2005).Google Scholar
21.Lee, T.A. and Navrotsky, A.: Enthalpy of formation of cubic yttria-stabilized hafnia. J. Mater. Res. 19, 1855 (2004).CrossRefGoogle Scholar
22.Ushakov, S.V., Brown, C.E., and Navrotsky, A.: Effect of La and Y on crystallization temperatures of hafnia and zirconia. J. Mater. Res. 19, 693 (2004).Google Scholar
23.Brunauer, S., Emmett, P.H., and Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309 (1938).CrossRefGoogle Scholar
24.Costa, G.C., Ushakov, S.V., Castro, R.H., Navrotsky, A., and Muccillo, R.: Calorimetric measurement of surface and interface enthalpies of yttria stabilized zirconia (YSZ). Chem. Mater. 22, 2937 (2010).CrossRefGoogle Scholar
25.Shvareva, T.Y., Ushakov, S.V., Navrotsky, A., Libera, J.A., and Elam, J.W.: Thermochemistry of nanoparticles on a substrate: Zinc oxide on amorphous silica. J. Mater. Res. 23, 1907 (2008).Google Scholar
26.Robie, R.A., Hemingway, B.S., and Fisher, J.R.: Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar Pressure and at Higher Temperatures. (U.S. Geol. Surv. Bull. 1452, Washington, DC, 1978) p. 172.Google Scholar
27.Wu, K. and Jin, Z.: Thermodynamic assessment of the HfO2-YO1.5, quasibinary system. Calphad 21, 421 (1997).Google Scholar
28.Zhang, P., Navrotsky, A., Guo, B., Kennedy, I., Clark, A.N., Charles, L., and Liu, Q.: Energetics of cubic and monoclinic yttrium oxide polymorphs: Phase transitions, surface enthalpies, and stability at the nanoscale. J. Phys. Chem. C 112, 932 (2008).Google Scholar
29.Murase, Y. and Kato, E.: Phase transformation of zirconia by Ball-Milling. J. Am. Ceram. Soc. 62, 527 (1979).Google Scholar
30.Murase, Y. and Kato, E.: Role of water vapor in crystallite growth and tetragonal-monoclinic phase transformation of zirconia. J. Am. Ceram. Soc. 66, 196 (1983).CrossRefGoogle Scholar