Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T21:57:23.675Z Has data issue: false hasContentIssue false

X-ray tensile testing of thin films

Published online by Cambridge University Press:  31 January 2011

I.C. Noyan
Affiliation:
IBM Research Division, T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598
G. Sheikh
Affiliation:
IBM Research Division, T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598
Get access

Abstract

The “x-ray tensile test” is the combination of the standard uniaxial tensile test with x-ray diffraction techniques. In this test, in addition to the mechanical stress-strain values usually obtained from a tensile test, one measures the x-ray strain and stress in the diffracting regions of the sample. In multilayer thin films or in multiphase materials, x-ray diffraction enables the determination of strains and stresses in the individual layers or phases. Correlation of the x-ray data with the mechanical stress-strain values may be used to analyze strain and load partitioning within the specimen. In this paper an extended theoretical analysis of this technique and its application to evaporated Cu films on Ni substrates is presented.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Pethica, J. B., Hutchings, R., and Oliver, W. C., Philos. Mag. A 48, 593 (1983).Google Scholar
2Kim, I. and Weil, R., in Testing of Metallic and Inorganic Coatings, edited by Harding, W.B. and Bari, G.A. Di, ASTM STP 947 (ASTM, Philadelphia, PA, 1987), p. 11.CrossRefGoogle Scholar
3Nakahara, S., Okinaka, Y., and Turner, D.R., J. Testing Evaluation 5, 178 (1977).Google Scholar
4Vatakhov, P. and Weil, R., Plating Surf. Finishing 77, 58 (1990).Google Scholar
5Mura, T., Micromechanics of Defects in Solids (Martinus-Nijhoff Publishers, The Hague, The Netherlands, 1982).Google Scholar
6Fuks, M. Y. and Belozerov, V. V., Fiz. Met. Metalloved. 34, 107 (1972).Google Scholar
7Kuan, T. S. and Murakami, M., Metall. Trans. A 13A, 383 (1982).Google Scholar
8Perry, A. J. and Chollet, L., J. Vac. Sci. Technol. A 4, 2801 (1986).Google Scholar
9Sheikh, G., “Residual Stresses and the Differential Deformation of Plated Structures”, Ph.D. Thesis, Columbia University, New York, 1990.CrossRefGoogle Scholar
10and, G. SheikhNoyan, I. C., Adv. X-ray Anal. 33, 161 (1990).Google Scholar
11Sheikh, G., Berger, A., and Noyan, I.C., in Electronic Packaging Materials Science V, edited by Lillie, E. D., Ho, P. S., Jaccodine, R., and Jackson, K. (Mater. Res. Soc. Symp. Proc. 203, Pittsburgh, PA, 1991), p. 153.Google Scholar
12Behnken, H. and Hauk, V., Thin Solid Films 193/194, 333 (1990).CrossRefGoogle Scholar
13Shute, C.J. and Cohen, J.B., J. Matei. Res. 6, 950 (1991).Google Scholar
14Shute, C. J. and Cohen, J. B., Mater. Sci. Eng. A 149, 167 (1992).Google Scholar
15Schadler, L. S. and Noyan, I. C., in Thin Films: Stresses and Mechanical Properties III, edited by Nix, W. D., Bravman, J. C., Arzt, E., and Freund, L. B. (Mater. Res. Soc. Symp. Proc. 239, Pittsburgh, PA, 1992), p. 151.Google Scholar
16Schadler, L.S. and Noyan, I.C., J. Mater. Sci. Lett. 11, 1067 (1992).CrossRefGoogle Scholar
17Schadler, L. S. and Noyan, I. C., Proc. IEEE 42nd ECTC Conf., 171 (1992).Google Scholar
18Noyan, I.C. and Cohen, J.B., Residual Stress Measurement by Diffraction and Interpretation (Springer-Verlag, New York, 1987).Google Scholar
19Smith, S.L. and Wood, W.A., Proc. R. Soc. London A 178, 93 (1941).Google Scholar
20Smith, S. L. and Wood, W. A., Proc. R. Soc. London A 181, 404 (1944).Google Scholar
21Marion, R.H. and Cohen, J.B., Adv. X-ray Anal. 20, 355 (1977).Google Scholar
22Perry, K., Noyan, I. C., Rudnik, P. J., and Cohen, J. B., Adv. X-ray Anal. 27, 159 (1984).Google Scholar
23Cullity, B.D., Adv. X-ray Anal. 20, 259 (1977).Google Scholar
24Withers, P.J., “The Development of the Eshelby Model and Its Application to Metal Matrix Composites,” Ph.D. Thesis, Cambridge University, England, 1988.Google Scholar
25Noyan, I.C. and Goldsmith, C.C., Adv. X-ray Anal. 34, 587 (1991).Google Scholar
26Timoshenko, S.P. and Goodier, J.N., Theory of Elasticity, 3rd ed. (McGraw-Hill, New York, 1970), p. 236.Google Scholar
27Bonda, N. R. and Noyan, I. C., Metall. Trans. A 23A, 479 (1992).Google Scholar
28Noyan, I. C., Metall. Trans. A 14A, 1907 (1983).Google Scholar