Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T21:55:05.388Z Has data issue: false hasContentIssue false

Waterborne acrylic hybrid adhesives based on a methacrylate-functionalized porous clay heterostructure for potential lamination application

Published online by Cambridge University Press:  15 August 2017

Sarocha Ruanpan
Affiliation:
The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand
Mark D. Soucek
Affiliation:
Department of Polymer Engineering, The University of Akron, Akron, Ohio 44325, USA
Hathaikarn Manuspiya*
Affiliation:
The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand; and Center of Excellence on Petrochemical and Materials Technology, Bangkok 10330, Thailand
*
a) Address all correspondence to this author. e-mail: hathaikarn.m@chula.ac.th
Get access

Abstract

A new waterborne acrylic (WAC) hybrid adhesive was evaluated for an untreated polypropylene lamination. The WAC hybrid adhesive was formulated with a new class of porous clay heterostructure (PCH), which was modified with 3-(trimethoxysilyl)propyl methacrylate (as a coupling agent) to promote chemical bonding with the acrylic matrix to form a methacrylate-functionalized PCH (MPCH). The WAC hybrid adhesive was based on copolymers (2-ethylhexyl acrylate, ethylene glycol methyl ether acrylate, 2-(hydroxyethyl) methacrylate, styrene and acrylic acid) with varying amounts of MPCH. The scanning electron microscopy micrographs revealed the presence of a well dispersed MPCH distributed throughout the matrix. The optimal adhesive performance, in terms of the 180° peel strength of bonded joints, of 140.2 N/m was achieved using 1.5 wt% of MPCH, while the thermal stability of the adhesives was improved with increasing MPCH loading levels.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Sarah Morgan

References

REFERENCES

United States Environmental Protection Agency: The 2011 National Emissions Inventory, version 2 Technical Support Document (2015). Available at: https://www.epa.gov/sites/production/files/2015-10/documents/nei2011v2_tsd_14aug2015.pdf (accessed January 20, 2017).Google Scholar
Romo-Uribe, A., Arcos-Casarrubias, J.A., Hernandez-Vargas, M.L., Reyes-Mayer, A., Aguilar-Franco, M., and Bagdhachi, J.: Acrylate hybrid nanocomposite coatings based on SiO2 nanoparticles by in situ batch emulsion polymerization. Prog. Org. Coat. 97, 288 (2016).CrossRefGoogle Scholar
Huang, S., Fan, D., Lei, Y., and Huang, H.: Alkoxysilane-functionalized acrylic copolymer latexes. I. Particle size, morphology, and film-forming properties. J. Appl. Polym. Sci. 94, 954 (2004).CrossRefGoogle Scholar
Ebnesajjad, S.: Adhesive Technology Handbook, 2nd ed. (William Andrew, New York, USA, 2009); ch. 5, p. 63.Google Scholar
Packham, D.E.: Handbook of Adhesion (Longman Scientific & Technical, Harlow, England, 1992).Google Scholar
Sanchez, C., Julián, B., Belleville, P., and Popall, M.: Applications of hybrid organic-inorganic nanocomposites. J. Mater. Chem. 15, 3559 (2005).CrossRefGoogle Scholar
Solhi, L., Atai, M., Nodehi, A., Imani, M., Ghaemi, A., and Khosravi, K.: Poly(acrylic acid) grafted montmorillonite as novel fillers for dental adhesives: Synthesis, characterization and properties of the adhesive. Dent. Mater. 28, 369 (2012).CrossRefGoogle ScholarPubMed
Diaconu, G., Paulis, M., and Leiza, J.R.: Towards the synthesis of high solids content waterborne poly(methyl methacrylate-co-butyl acrylate)/montmorillonite nanocomposites. Polymer 49, 2444 (2008).CrossRefGoogle Scholar
Mičušík, M., Bonnefond, A., Paulis, M., and Leiza, J.R.: Synthesis of waterborne acrylic/clay nanocomposites by controlled surface initiation from macroinitiator modified montmorillonite. Eur. Polym. J. 48, 896 (2012).CrossRefGoogle Scholar
Xiang, B. and Zhang, J.: Using ultrasound-assisted dispersion and in situ emulsion polymerization to synthesize TiO2/ASA (acrylonitrile-styrene-acrylate) nanocomposites. Composites, Part B 99, 196 (2016).CrossRefGoogle Scholar
Campos, C.H., Urbano, B.F., and Rivas, B.L.: Synthesis and characterization of organic-inorganic hybrid composites from poly(acrylic acid)-[3-(trimethoxysilyl)propyl methacrylate]-Al2O3 . Composites, Part B 57, 1 (2014).CrossRefGoogle Scholar
Rong, M.Z., Ji, Q.L., Zhang, M.Q., and Friedrich, K.: Graft polymerization of vinyl monomers onto nanosized alumina particles. Eur. Polym. J. 38, 1573 (2002).CrossRefGoogle Scholar
Chang, C.C., Oyang, T.Y., Chen, Y.C., Hwang, F.H., and Cheng, L.P.: Preparation of hydrophobic nanosilica-filled polyacrylate hard coatings on plastic substrates. J. Coat. Technol. Res. 11, 381 (2014).CrossRefGoogle Scholar
Lin, D.J., Don, T.M., Chen, C.C., Lin, B.Y., Lee, C.K., and Cheng, L.P.: Preparation of a nanosilica-modified negative-type acrylate photoresist. J. Appl. Polym. Sci. 107, 1179 (2008).CrossRefGoogle Scholar
Gumfekar, S.P., Kunte, K.J., Ramjee, L., Kate, K.H., and Sonawane, S.H.: Synthesis of CaCO3–P(MMA-BA) nanocomposite and its application in water based alkyd emulsion coating. Prog. Org. Coat. 72, 632 (2011).CrossRefGoogle Scholar
Bonnefond, A., Mičušík, M., Paulis, M., Leiza, J.R., Teixeira, R.F.A., and Bon, S.A.F.: Morphology and properties of waterborne adhesives made from hybrid polyacrylic/montmorillonite clay colloidal dispersions showing improved tack and shear resistance. Colloid Polym. Sci. 291, 167 (2013).CrossRefGoogle Scholar
Oh, J.K., Park, C.H., Lee, S.W., Park, J.W., and Kim, H.J.: Adhesion performance of PSA–clay nano-composites by the in situ polymerization and mechanical blending. Int. J. Adhes. Adhes. 47, 13 (2013).CrossRefGoogle Scholar
Kajtna, J., Šebenik, U., and Krajnc, M.: Synthesis and dynamic mechanical analysis of nanocomposite UV crosslinkable 100% solid acrylic pressure sensitive adhesives. Int. J. Adhes. Adhes. 49, 18 (2014).CrossRefGoogle Scholar
Kango, S., Kalia, S., Celli, A., Njuguna, J., Habibi, Y., and Kumar, R.: Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. Prog. Polym. Sci. 38, 1232 (2013).CrossRefGoogle Scholar
Guo, Y., Wang, M., Zhang, H., Liu, G., Zhang, L., and Qu, X.: The surface modification of nanosilica, preparation of nanosilica/acrylic core–shell composite latex, and its application in toughening PVC matrix. J. Appl. Polym. Sci. 107, 2671 (2008).CrossRefGoogle Scholar
Landfester, K.: Polymer dispersions and their industrial applications. Macromol. Chem. Phys. 204, 542 (2003).CrossRefGoogle Scholar
Foster, A.B., Lovell, P.A., and Rabjohns, M.A.: Control of adhesive properties through structured particle design of water-borne pressure-sensitive adhesives. Polymer 50, 1654 (2009).CrossRefGoogle Scholar
Araújo, P.H.H., Abad, C., de la Cal, J.C., Pinto, J.C., and Asua, J.M.: Emulsion polymerization in a loop reactor: Effect of the operation conditions. Polym. React. Eng. 7, 303 (1999).CrossRefGoogle Scholar
Brunauer, S., Emmett, P.H., and Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309 (1938).CrossRefGoogle Scholar
Barrett, E.P., Joyner, L.G., and Halenda, P.P.: The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373 (1951).CrossRefGoogle Scholar
Hair, M.L.: Infrared Spectroscopy in Surface Chemistry (Marcel Dekker Inc., New York, USA, 1967).Google Scholar
Bunnak, N., Ummartyotin, S., Laoratanakul, P., Bhalla, A.S., and Manuspiya, H.: Synthesis and characterization of magnetic porous clay heterostructure. J. Porous Mater. 21, 1 (2013).CrossRefGoogle Scholar
Wenfang, L., Zhaoxia, G., and Jian, Y.: Preparation of crosslinked composite nanoparticles. J. Appl. Polym. Sci. 97, 1538 (2005).Google Scholar
Brunauer, S., Deming, L.S., Deming, W.E., and Teller, E.: On a theory of the van der Waals adsorption of gases. J. Am. Chem. Soc. 62, 1723 (1940).CrossRefGoogle Scholar
Sing, K.S.W., Everett, D.H., Hual, R.A.W., Moscou, L., Pierotti, R.A., Rouquérol, J., and Siemieniewska, T.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603 (1985).CrossRefGoogle Scholar
Vega-Baudrit, J., Navarro-Bañón, V., Vázquez, P., and Martín-Martínez, J.M.: Addition of nanosilicas with different silanol content to thermoplastic polyurethane adhesives. Int. J. Adhes. Adhes. 26, 378 (2006).CrossRefGoogle Scholar
Arevalillo, A., do Amaral, M., and Asua, J.M.: Rheology of concentrated polymeric dispersions. Ind. Eng. Chem. Res. 45, 3280 (2006).CrossRefGoogle Scholar
Lin, W.C., Yang, C.H., Wang, T.L., Shieh, Y.T., and Chen, W.J.: Hybrid thin films derived from UV-curable acrylate-modified waterborne polyurethane and monodispersed colloidal silica. Express Polym. Lett. 6, 2 (2012).CrossRefGoogle Scholar
Feldgitscher, C., Peterlik, H., Ivanovici, S., Puchberger, M., and Kickelbick, G.: Crosslinked hybrid polymer matrices with nanostructure directing abilities for lanthanum hydroxide growth. Chem. Commun. 37, 5564 (2009).CrossRefGoogle Scholar
Mahkam, M. and Vakhshouri, L.: Colon-specific drug delivery behavior of pH-responsive PMAA/perlite composite. Int. J. Mol. Sci. 11, 1546 (2010).CrossRefGoogle ScholarPubMed
de la Fuente, J.L., Fernández-García, M., and Madruga, E.L.: Characterization and thermal properties of poly(n-butyl acrylate-g-styrene) graft copolymers. J. Appl. Polym. Sci. 80, 783 (2001).3.0.CO;2-5>CrossRefGoogle Scholar
Sun, D., Miao, X., Zhang, K., Kim, H., and Yuan, Y.: Triazole-forming waterborne polyurethane composites fabricated with silane coupling agent functionalized nano-silica. J. Colloid Interface Sci. 361, 483 (2011).CrossRefGoogle ScholarPubMed
Horowitz, H.H. and Metzger, G.: A new analysis of thermogravimetric traces. Anal. Chem. 35, 1464 (1963).CrossRefGoogle Scholar
Mirzataheri, M., Mahdavian, A.R., and Atai, M.: Kinetic studies of the preparation of nanocomposites based on encapsulated Cloisite 30B in poly[styrene-co-(butyl acrylate)] via mini-emulsion polymerization. Polym. Int. 60, 613 (2011).CrossRefGoogle Scholar
Supplementary material: File

Ruanpan supplementary material

Figures S1-S2

Download Ruanpan supplementary material(File)
File 15.6 MB