Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T22:02:04.087Z Has data issue: false hasContentIssue false

Viscoelastic sigmoid anomalies in BaZrO3–BaTiO3 near phase transformations due to negative stiffness heterogeneity

Published online by Cambridge University Press:  01 June 2011

Liang Dong
Affiliation:
Department of Engineering Physics, University of Wisconsin, Madison, Wisconsin 53706-1687
Donald S. Stone
Affiliation:
Materials Science Program, University of Wisconsin, Madison, Wisconsin 53706-1687
Roderic S. Lakes*
Affiliation:
Department of Engineering Physics, University of Wisconsin, Madison, Wisconsin 53706-1687; and Engineering Mechanics Program, University of Wisconsin, Madison, Wisconsin 53706-1687; and Materials Science Program, University of Wisconsin, Madison, Wisconsin 53706-1687
*
a)Address all correspondence to this author. e-mail: lakes@engr.wisc.edu
Get access

Abstract

BaZrO3–BaTiO3 ceramics exhibit a shift in transformation temperatures as revealed by dielectric and viscoelastic spectroscopy; a phase diagram has been established. Sigmoid anomalies in Poisson’s ratio and bulk modulus during the ferroelastic transitions were observed in doped materials, which are not predicted by standard theories for phase transformations. “Hashin–Shtrikman” composite model with negative stiffness heterogeneity can well explain this phenomenon. Negative stiffness heterogeneity is considered to be caused by the strained BaTiO3 unit cells in the vicinity of BaZrO3-rich zones under the perturbation of lattice reconstruction.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lakes, R.S.: Foam structures with a negative Poisson’s ratio. Science 235, 1038 (1987).CrossRefGoogle ScholarPubMed
2.Drugan, W.: Elastic composite materials having a negative stiffness can be stable. Phys. Rev. Lett. 98, 055502 (2007).CrossRefGoogle ScholarPubMed
3.Jaglinski, T., Kochmann, D., Stone, D.S., and Lakes, R.S.: Materials with viscoelastic stiffness greater than diamond. Science 315, 620 (2007).CrossRefGoogle ScholarPubMed
4.Dong, L., Stone, D.S., and Lakes, R.S.: Softening of bulk modulus and negative Poisson’s ratio in barium titanate ceramic near the Curie point. Philos. Mag. Lett. 90, 23 (2010).CrossRefGoogle Scholar
5.Kulcsar, F.: A microstructure study of barium titanate ceramics. J. Am. Ceram. Soc. 39, 13 (1956).CrossRefGoogle Scholar
6.Lee, T., Lakes, R.S., and Lal, A.: Resonant ultrasound spectroscopy for measurement of mechanical damping: Comparison with broadband viscoelastic spectroscopy. Rev. Sci. Instrum. 71, 2855 (2000).CrossRefGoogle Scholar
7.Sun, D.Z., Ren, X.B., and Otsuka, K.: Stabilization effect in ferroelectric materials during aging in ferroelectric state. Appl. Phys. Lett. 87, 142903 (2005).CrossRefGoogle Scholar
8.Avrahami, Y. and Tuller, H.L.: US Patent No: US 6,526,833 B1, (2003).Google Scholar
9.Avrahami, Y., and Tuller, H.L.: Improved electromechanical response in rhombohedral BaTiO3. J. Electroceram. 13, 463 (2004).CrossRefGoogle Scholar
10.Arlt, G. and Hennings, D.: G. and de With: Dielectric properties of fine-grained barium titanate ceramics. J. Appl. Phys. 58, 1619 (1985).CrossRefGoogle Scholar
11.Hoshina, T., Takizawa, K., Li, J.Y., Kasama, T., Kakemoto, H., and Tsurumi, T.: Domain size effect on dielectric properties of barium titanate ceramics. Jpn. J. Appl. Phys. 47, 7607 (2008).CrossRefGoogle Scholar
12.Kinoshita, K. and Yamaji, A.: Grain-size effects on dielectric properties in barium titanate ceramics. J. Appl. Phys. 47, 371 (1976).CrossRefGoogle Scholar
13.Kell, R.C. and Hellicar, N.J.: Structural transitions in barium titanate-zirconate transducer materials. Acustica 6, 235 (1956).Google Scholar
14.Zhang, J.X., Fung, P.C.W., and Zeng, W.G.: Dissipation function of first order phase transformation in solids via internal friction measurements. Phys. Rev. B 52, 268 (1995).CrossRefGoogle ScholarPubMed
15.Lakes, R.S.: Extreme damping in composite materials with a negative stiffness phase. Phys. Rev. Lett. 86, 2897 (2001).CrossRefGoogle ScholarPubMed
16.Verbitshais, T.N., Zhdanov, S.S., Venevtsev, Iu.N., and Solsviev, S.P.: Phenomenological theory of successive phase transitions in dielectric materials. Sov. Phys. Crystallogr. 3, 182 (1958).Google Scholar
17.Yoshimoto, K., Jain, T.S., Workum, K.V., Nealey, P.F., and de Pablo, J.J.: Mechanical heterogeneities in model polymer glasses at small length scales. Phys. Rev. Lett. 93, 175501 (2004).CrossRefGoogle ScholarPubMed
18.Goretta, K.C., Park, E.T., Koritala, R.E., Cuber, M.M., Pascual, E.A., Chen, N., de Arellano-López, A.R., and Routbort, J.L.: Thermomechanical response of polycrystalline BaZrO3. Physica C 309, 245 (1998).CrossRefGoogle Scholar