Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T23:02:45.806Z Has data issue: false hasContentIssue false

Vapor phase synthesis of Al-doped titania powders

Published online by Cambridge University Press:  03 March 2011

Kamal M. Akhtar
Affiliation:
Department of Chemical Engineering, Center for Aerosol Processes, University of Cincinnati, Cincinnati, Ohio 45221-0171
Sotiris E. Pratsinis*
Affiliation:
Department of Chemical Engineering, Center for Aerosol Processes, University of Cincinnati, Cincinnati, Ohio 45221-0171
Sebastian V.R. Mastrangelo
Affiliation:
DuPont Chemicals, Edge Moor, Delaware 19809
*
a)Author to whom correspondence should be addressed.
Get access

Abstract

The role of aluminum as dopant in gas phase synthesis of titania powders was experimentally investigated in an aerosol flow reactor between 1300 and 1700 K. Titania was produced by vapor phase oxidation of titanium tetrachloride in the presence of dopant aluminum trichloride vapor. The presence of aluminum altered the particle morphology from polyhedral to irregular crystals. Energy dispersive analysis and transmission electron microscopy indicated that the powders were mixtures of crystalline titania and amorphous alumina. Analysis by XPS indicated significant enrichment of aluminum on the particle surface. Some aluminum titanate (up to 17% by volume) was formed at 1700 K when a high concentration of AlCl3 was used (AlCl3/TiCl4 ≥ 0.07). Measurements of lattice parameters by x-ray diffraction indicated that aluminum formed a solid solution in titania. While titania synthesized in the absence of aluminum was about 90% anatase, the introduction of aluminum resulted in pure rutile at AlCl3/TiCl4 = 0.07. The effects of aluminum on titania phase composition and morphology are explained by the creation of oxygen vacancies in the titania crystallites and by the enhancement of the sintring rate of titania grains.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kofstad, P., Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides, Chap. 8 (John Wiley-Interscience, New York, 1972).Google Scholar
2Solomon, D. H. and Hawthorne, D. G., Chemistry of Paints and Fillers, Chap. 2 (John Wiley and Sons, New York, 1983).Google Scholar
3Kumar, K. P., Zaspalis, V. T., De Mul, F. F. M., Keizer, K., and Burggraaf, A. J., in Better Ceramics Through Chemistry V, edited by Hampden-Smith, M. J., Klemperer, W. G., and Brinker, C. J. (Mater. Res. Soc. Symp. Proc. 271, Pittsburgh, PA, 1992), pp. 499504.Google Scholar
4Mezey, E. J., in Vapor Deposition, edited by Powell, C. F., Oxley, J. H., and Blocher, J. M. Jr. (John Wiley & Sons, New York, 1966), p. 423.Google Scholar
5Chen, C-J. and Wu, J-M., Mater. Sci. Eng. B5, 377383 (1990).CrossRefGoogle Scholar
6MacKenzie, K. J. D., Trans. J. Brit. Ceram. Soc. 74, 2934 (1975); 7784 (1975).Google Scholar
7Shannon, R. D., J. Appl. Phys. 35, 34143416 (1964).CrossRefGoogle Scholar
8Hung, C-H., Miquel, P. F., and Katz, J. L., J. Mater. Res. 7, 18701875 (1992).CrossRefGoogle Scholar
9Akhtar, M. K., Xiong, Y., and Pratsinis, S. E., AIChE J. 37, 15611570 (1991).CrossRefGoogle Scholar
10Akhtar, M. K., Pratsinis, S. E., and Mastrangelo, S. V. R., J. Am. Ceram. Soc. 75, 34083416 (1992).CrossRefGoogle Scholar
11Pratsinis, S. E., Bai, H., Biswas, P., Frenklach, M., and Mastrangelo, S. V. R., J. Am. Ceram. Soc. 73, 21582162 (1990).CrossRefGoogle Scholar
12Sørlie, M. and Øye, H.A., Inorg. Chem. 17, 24732493 (1978).CrossRefGoogle Scholar
13Hildenbrand, D. L., Lau, K. H., and Mastrangelo, S. V. R., J. Phys. Chem. 95, 34353437 (1991).CrossRefGoogle Scholar
14Klemperer, W., J. Chem. Phys. 24, 353355 (1956).CrossRefGoogle Scholar
15Klug, H. P. and Alexander, L. E., X-Ray Diffraction Procedures, Chap. 9 (John Wiley and Sons, New York, 1954).Google Scholar
16CRC Handbook of Chemistry and Physics, edited by Lide, D. R. (CRC Press, Boca Raton, FL, 1990), pp. 4113.Google Scholar
17Suyama, Y. and Kato, A., J. Am. Ceram. Soc. 68, C154C156 (1985).Google Scholar
18Gregg, S. J. and Sing, K. S.W., Adsorption, Surface Area and Porosity (Academic Press, New York, 1967), p. 35.Google Scholar
19DiGiovanni, D. J., Morse, T. F., and Cipolla, J. W. Jr., J. Am. Ceram. Soc. 71, 914923 (1988).CrossRefGoogle Scholar
20Slepetys, R. A. and Vaughan, P. A., J. Phys. Chem. 73, 21572162 (1969).CrossRefGoogle Scholar
21Cullity, B. D., Elements of X-ray Diffraction (Addison-Wesley Publishing Co., Reading, MA, 1978), p. 411.Google Scholar
22Hebrard, J-L., Nortier, P., Pijolat, M., and Soustelle, M., J. Am. Ceram. Soc. 73, 7984 (1990).CrossRefGoogle Scholar
23Shannon, R. D. and Prewitt, C. T., Acta Crystallogr. B25, 925946 (1969).CrossRefGoogle Scholar
24Shannon, R. D. and Pask, J. A., J. Am. Ceram. Soc. 48, 391398 (1965).CrossRefGoogle Scholar
25Xiong, Y., Akhtar, M. K., and Pratsinis, S. E., J. Aerosol Sci. 24, 301313 (1993).CrossRefGoogle Scholar
26Anderson, H. A., J. Am. Ceram. Soc. 50, 235238 (1967).CrossRefGoogle Scholar
27Bagley, R. D., Cutler, I. B., and Johnson, D. L., J. Am. Ceram. Soc. 53, 793799 (1970).CrossRefGoogle Scholar
28Perkin-Elmer Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer, Eden Prairie, MN, 1978).Google Scholar