Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T21:56:54.070Z Has data issue: false hasContentIssue false

Ultralow dielectric constant nickel–zinc ferrites using microwave sintering

Published online by Cambridge University Press:  03 March 2011

Ramesh Peelamedu*
Affiliation:
Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802
Craig Grimes
Affiliation:
Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802
Dinesh Agrawal
Affiliation:
Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802
Rustum Roy
Affiliation:
Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802
Purushotham Yadoji
Affiliation:
Centre for Materials for Electronics Technology (C-MET), Cherlapally, HCL(PO), Hyderabad, 500 051, India
*
a)Address all correspondence to this author. e-mail: rdp10@psu.edu
Get access

Abstract

Ultralow dielectric constant values were measured on Ni–Zn ferrites prepared using Fe2O3 as a starting material and sintered in a microwave field. Significant differences in microstructure, magnetic, and dielectric properties were observed between microwave-sintered Ni–Zn ferrites prepared using Fe3O4 (T34) and those starting with Fe2O3 (T23) ingredients. Higher magnetization values observed in T23 ferrite are attributed to large grain size, possibly containing abundant domain walls and the presence of fewer Fe2+ ions. The ultralow dielectric constant values observed on T23 ferrites show that this procedure is highly suitable to prepare Ni–Zn ferrites for high-frequency switching applications.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Igarash, H. and Okazaki, K., J. Am. Ceram. Soc. 60, 51 (1977).Google Scholar
2.Abraham, T., Am. Ceram. Soc. Bull. 73, 62 (1994).Google Scholar
3.Slick, P.I., in Ferromagnetic Materials, edited by Wohlforth, E.P. (North-Holland, Amsterdam, The Netherlands, 1980), Vol. 2, p. 189.Google Scholar
4.Rao, K.J. and Ramesh, P.D., Bull. Mater. Sci. 18, 447 (1995).CrossRefGoogle Scholar
5.Peelamedu, R.D., Roy, R., and Agrawal, D., Mater. Res. Bull. 36, 2723 (2001).CrossRefGoogle Scholar
6.Peelamedu, R.D., Roy, R., and Agrawal, D.K., Mater. Lett. 55, 234 (2002).CrossRefGoogle Scholar
7.Iskander, M.F., MRS Bull. 18, 30 (1993).Google Scholar
8.Yadoji, P., Peelamedu, R., Agrawal, D., and Roy, R., Mater. Sci. Eng. B 98, 269 (2003).CrossRefGoogle Scholar
9.Roy, R., Peelamedu, R., Grimes, C., Cheng, J., and Agrawal, D., J. Mater. Res. 17, 3008 (2002).CrossRefGoogle Scholar
10.Roy, R., Peelamedu, R., Hurtt, L., Cheng, J.P., and Agrawal, D., Mater. Res. Innov. 6, 128 (2002).Google Scholar
11.Koops, C.G., Phys. Rev. 83, 121 (1951).CrossRefGoogle Scholar
12.Abdeen, A.M., J. Magn. Magn. Mater. 192, 121 (1999).Google Scholar
13.Hiti, M.A. El, J. Magn. Magn. Mater. 192, 305 (1999).CrossRefGoogle Scholar
14.Raja, R.V. Mangala, Kumar, S. Anantha, Manohar, P., and Gnanam, F.D., Mater. Lett. 57, 1151 (2003).CrossRefGoogle Scholar