Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T17:42:34.614Z Has data issue: false hasContentIssue false

Two-step growth of high-quality Nb/(Bi0.5Sb0.5)2Te3/Nb heterostructures for topological Josephson junctions

Published online by Cambridge University Press:  27 July 2018

Hui Zhang
Affiliation:
Hefei National Laboratory for Physical Sciences at the Microscale (HFNL), University of Science and Technology of China, Hefei 230026, China; Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada; Electrical and Computer Engineering (ECE), University of Waterloo, Waterloo, Ontario N2L 3G1, Canada; and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
Xiaodong Ma
Affiliation:
Hefei National Laboratory for Physical Sciences at the Microscale (HFNL), University of Science and Technology of China, Hefei 230026, China; Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada; and Electrical and Computer Engineering (ECE), University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
Lin Li
Affiliation:
Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada; and Electrical and Computer Engineering (ECE), University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
Deler Langenberg
Affiliation:
Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
Chang Gan Zeng
Affiliation:
Hefei National Laboratory for Physical Sciences at the Microscale (HFNL), University of Science and Technology of China, Hefei 230026, China
Guo Xing Miao*
Affiliation:
Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada; and Electrical and Computer Engineering (ECE), University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
*
a)Address all correspondence to this author. e-mail: guo-xing.miao@uwaterloo.ca
Get access

Abstract

The topological insulator/superconductor heterostructure is one of the most promising platforms to create and manipulate Majorana bound states. Here, we used molecular beam epitaxy to grow high-quality (Bi0.5Sb0.5)2Te3 films on Nb surfaces. To promote proper (Bi0.5Sb0.5)2Te3 film nucleation in the early growth stage, we developed a two-step growth method. Bi, Sb, and Te clusters were first evaporated at a low temperature of 180 °C, which is below the typical growth temperature and then annealed to form a crystalized passivation layer. Second, a standard (Bi0.5Sb0.5)2Te3 film was grown under the normal deposition temperature of 280 °C. We used reflection high-energy electron diffraction, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction to further characterize the (Bi0.5Sb0.5)2Te3 film and passivation layer quality. Finally, the top Nb film was laid down by magnetron sputtering at room temperature. The hetero-Nb/epitaxial (Bi0.5Sb0.5)2Te3/Nb stacks were further fabricated into micro-Josephson junctions and showed clear Josephson currents demonstrating an excellent material quality.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ivanov, D.A.: Non-abelian statistics of half-quantum vortices in p-wave superconductors. Phys. Rev. Lett. 86, 268271 (2001).CrossRefGoogle ScholarPubMed
Catherine, K.: Chiral p-wave order in Sr2RuO4. Rep. Prog. Phys. 75, 042501 (2012).Google Scholar
Ando, Y. and Fu, L.: Topological crystalline insulators and topological superconductors: From concepts to materials. Annu. Rev. Condens. Matter. Phys. 6, 361 (2015).CrossRefGoogle Scholar
Mourik, V., Zuo, K., Frolov, S.M., Plissard, S.R., Bakkers, E.P.A.M., and Kouwenhoven, L.P.: Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 336, 1003 (2012).CrossRefGoogle ScholarPubMed
Sau, J.D., Lutchyn, R.M., Tewari, S., and Sarma, S.D.: Generic new platform for topological quantum computation using semiconductor heterostructures. Phys. Rev. Lett. 104, 040502 (2010).CrossRefGoogle ScholarPubMed
Zhang, H., Liu, C-X., Qi, X-L., Dai, X., Fang, Z., and Zhang, S-C.: Topological insulators in Bi2Se3, Bi2Te3, and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5, 438 (2009).CrossRefGoogle Scholar
Chen, Y.L., Analytis, J.G., Chu, J-H., Liu, Z.K., Mo, S-K., Qi, X.L., Zhang, H.J., Lu, D.H., Dai, X., Fang, Z., Zhang, S.C., Fisher, I.R., Hussain, Z., and Shen, Z-X.: Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 325, 178 (2009).CrossRefGoogle ScholarPubMed
Xia, Y., Qian, D., Hsieh, D., Wray, L., Pal, A., Lin, H., Bansil, A., Grauer, D., Hor, Y.S., Cava, R.J., and Hasan, M.Z.: Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 5, 398 (2009).CrossRefGoogle Scholar
Hsieh, D., Xia, Y., Wray, L., Qian, D., Pal, A., Dil, J.H., Osterwalder, J., Meier, F., Bihlmayer, G., Kane, C.L., Hor, Y.S., Cava, R.J., and Hasan, M.Z.: Observation of unconventional quantum spin textures in topological insulators. Science 323, 919 (2009).CrossRefGoogle ScholarPubMed
Fu, L. and Kane, C.L.: Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).CrossRefGoogle ScholarPubMed
Kitaev, A.Yu.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2 (2003).CrossRefGoogle Scholar
Nayak, C., Simon, S.H., Stern, A., Freedman, M., and Sarma, S.D.: Non-abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083 (2008).CrossRefGoogle Scholar
Wang, M-X., Liu, C., Xu, J-P., Yang, F., Miao, L., Yao, M-Y., Gao, C.L., Shen, C., Ma, X., Chen, X., Xu, Z-A., Liu, Y., Zhang, S-C., Qian, D., Jia, J-F., and Xue, Q-K.: The coexistence of superconductivity and topological order in the Bi2Se3 thin films,. Science 336, 52 (2012).CrossRefGoogle Scholar
Xu, J-P., Liu, C., Wang, M-X., Ge, J., Liu, Z-L., Yang, X., Chen, Y., Liu, Y., Xu, Z-A., Gao, C-L., Qian, D., Zhang, F-C., and Jia, J-F.: Artificial topological superconductor by the proximity effect. Phys. Rev. Lett. 112, 217001 (2014).CrossRefGoogle Scholar
Xu, J-P., Wang, M-X., Liu, Z.L., Ge, J-F., Yang, X., Liu, C., Xu, Z.A., Guan, D., Gao, C.L., Qian, D., Liu, Y., Wang, Q-H., Zhang, F-C., Xue, Q-K., and Jia, J-F.: Experimental detection of a Majorana mode in the core of a magnetic vortex inside a topological insulator-superconductor Bi2Te3/NbSe2 heterostructure. Phys. Rev. Lett. 114, 017001 (2015).CrossRefGoogle Scholar
Sun, H-H., Zhang, K-W., Hu, L-H., Li, C., Wang, G-Y., Ma, H-Y., Xu, Z-A., Gao, C-L., Guan, D-D., Li, Y-Y., Liu, C., Qian, D., Zhou, Y., Fu, L., Li, S-C., Zhang, F-C., and Jia, J-F.: Majorana zero mode detected with spin selective Andreev reflection in the vortex of a topological superconductor. Phys. Rev. Lett. 116, 257003 (2016).CrossRefGoogle ScholarPubMed
Xu, S-Y., Alidoust, N., Belopolski, I., Richardella, A., Liu, C., Neupane, M., Bian, G., Huang, S-H., Sankar, R., Fang, C., Dellabetta, B., Dai, W., Li, Q., Gilbert, M.J., Chou, F., Samarth, N., and Hasan, M.Z.: Momentum-space imaging of Cooper pairing in a half-Dirac-gas topological superconductor. Nat. Phys. 10, 943 (2014).CrossRefGoogle Scholar
Zareapour, P., Hayat, A., Zhao, S.Y.F., Kreshchuk, M., Jain, A., Kwok, D.C., Lee, N., Cheong, S-W., Xu, Z., Yang, A., Gu, G.D., Jia, S., Cava, R.J., and Burch, K.S.: Proximity-induced high-temperature superconductivity in the topological insulators Bi2Se3 and Bi2Te3. Nat. Commun. 3, 1056 (2012).CrossRefGoogle Scholar
Wang, E., Ding, H., Fedorov, A.V., Yao, W., Li, Z., Lv, Y-F., Zhao, K., Zhang, L-G., Xu, Z., Schneeloch, J., Zhong, R., Ji, S-H., Wang, L., He, K., Ma, X., Gu, G., Yao, H., Xue, Q-K., Chen, X., and Zhou, S.: Fully gapped topological surface states in Bi2Se3 films induced by a d-wave high-temperature superconductor. Nat. Phys. 9, 621 (2013).CrossRefGoogle Scholar
Koren, G. and Kirzhner, T.: Zero-energy bound states in tunneling conductance spectra at the interface of an s-wave superconductor and a topological insulator in NbN/Bi2Se3/Au thin-film junctions. Phys. Rev. B 86, 144508 (2012).CrossRefGoogle Scholar
Koren, G., Kirzhner, T., Kalcheim, Y., and Millo, O.: Signature of proximity-induced p x + ip y triplet pairing in the doped topological insulator Bi2Se3 by the s-wave superconductor NbN. Europhys. Lett. 103, 67010 (2013).CrossRefGoogle Scholar
Koren, G.: Proximity effects at the interface of a superconductor and a topological insulator in NbN–Bi2Se3 thin film bilayers. Supercond. Sci. Technol. 28, 2 (2014).Google Scholar
Koren, G.: Reflections on the first year of PLD of high temperature superconducting thin films and some recent advances in PLD of topological superconducting NbN–Bi2Se3–Au junctions. Mater. Sci. Eng., A 4, 334 (2014).Google Scholar
He, Q.L., Pan, L., Stern, A.L., Burks, E.C., Che, X., Yin, G., Wang, J., Lian, B., Zhou, Q., Choi, E.S., Murata, K., Kou, X., Chen, Z., Nie, T., Shao, Q., Fan, Y., Zhang, S-C., Liu, K., Xia, J., and Wang, K.L.: Chiral Majorana fermion modes in a quantum anomalous Hall insulator–superconductor structure. Science 357, 294 (2017).CrossRefGoogle Scholar
Williams, J.R., Bestwick, A.J., Gallagher, P., Hong, S.S., Cui, Y., Bleich, A.S., Analytis, J.G., Fisher, I.R., and Gordon, D.G.: Unconventional Josephson effect in hybrid superconductor-topological insulator devices. Phys. Rev. Lett. 109, 056803 (2012).CrossRefGoogle ScholarPubMed
Veldhorst, M., Molenaar, C.G., Wang, X.L., Hilgenkamp, H., and Brinkman, A.: Experimental realization of superconducting quantum interference devices with topological insulator junctions. Appl. Phys. Lett. 100, 072602 (2012).CrossRefGoogle Scholar
Cho, S., Dellabetta, B., Yang, A., Schneeloch, J., Xu, Z., Valla, T., Gu, G., Gilbert, M.J., and Mason, N.: Symmetry protected Josephson supercurrents in three-dimensional topological insulators. Nat. Commun. 4, 1689 (2013).CrossRefGoogle ScholarPubMed
Pang, Y., Wang, J.H., Lyu, Z.Z., Yang, G., Fan, J., Liu, G.T., Ji, Z.Q., Jing, X.N., Yang, C.L., and Lu, L.: Spatially resolved gap closing in single Josephson junctions constructed on Bi2Te3 surface. Chin. Phys. B 25, 117402 (2016).CrossRefGoogle Scholar
Chiu, C-K., Gilbert, M.J., and Hughes, T.L.: Vortex lines in topological insulator-superconductor heterostructures. Phys. Rev. B 84, 144507 (2011).CrossRefGoogle Scholar
Fan, Y., Upadhyaya, P., Kou, X., Lang, M., Takei, S., Wang, Z., Tang, J., He, L., Chang, L-T., Montazeri, M., Yu, G., Jiang, W., Nie, T., Schwartz, R.N., Tserkovnyak, Y., and Wang, K.L.: Magnetization switching through giant spin–orbit torque in a magnetically doped topological insulator heterostructure. Nat. Mater. 13, 699 (2014).CrossRefGoogle Scholar
Kou, X., He, L., Lang, M., Fan, Y., Wong, K., Jiang, Y., Nie, T., Jiang, W., Upadhyaya, P., Xing, Z., Wang, Y., Xiu, F., Schwartz, R.N., and Wang, K.L.: Manipulating surface-related ferromagnetism in modulation-doped topological insulators. Nano Lett. 13, 4587 (2013).CrossRefGoogle ScholarPubMed
Zhang, Y., He, K., Chang, C-Z., Song, C-L., Wang, L-L., Chen, X., Jia, J-F., Fang, Z., Dai, X., Shan, W-Y., Shen, S-Q., Niu, Q., Qi, X-L., Zhang, S-C., Ma, X-C., and Xue, Q-K.: Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nat. Phys. 6, 584 (2010).CrossRefGoogle Scholar
Zhang, J., Chang, C-Z., Zhang, Z., Wen, J., Feng, X., Li, K., Liu, M., He, K., Wang, L., Chen, X., Xue, Q-K., Ma, X., and Wang, Y.: Band structure engineering in (Bi1−xSbx)2Te3 ternary topological insulators. Nat. Commun. 2, 574 (2011).CrossRefGoogle Scholar
Tang, Y.C., Zhang, H., Kwon, S., Mohebbi, H.R., Cory, D.G., Peng, L.C., Gu, L., Guo, H.Z., Jin, K.J., and Miao, G.X.: Superconducting resonators based on TiN/tapering/NbN/tapering/TiN heterostructures. Adv. Eng. Mater 18, 1816 (2016).CrossRefGoogle Scholar
Jerng, S-K., Joo, K., Kim, Y., Yoon, S-M., Lee, J.H., Kim, M., Kim, J.S., Yoon, E., Chuna, S-H., and Kim, Y.S.: Ordered growth of topological insulator Bi2Se3 thin films on dielectric amorphous SiO2 by MBE. Nanoscale 5, 10618 (2013).CrossRefGoogle ScholarPubMed
Bansal, N., Kim, Y.S., Edrey, E., Brahlek, M., Horibe, Y., Iida, K., Tanimura, M., Li, G-H., Feng, T., Lee, H-D., Gustafsson, T., Andrei, E., and Oh, S.: Epitaxial growth of topological insulator Bi2Se3 film on Si(111) with atomically sharp interface. Thin Solid Films 520, 224 (2011).CrossRefGoogle Scholar
Li, H.D., Wang, Z.Y., Kan, X., Guo, X., He, H.T., Wang, Z., Wang, J.N., Wong, T.L., Wang, N., and Xie, M.H.: The Van der Waals epitaxy of Bi2Se3 on the vicinal Si(111) surface: An approach for preparing high-quality thin films of a topological insulator. New J. Phys. 12, 103038 (2010).CrossRefGoogle Scholar
Wang, Z.Y., Li, H.D., Guo, X., Ho, W.K., and Xie, M.H.: Growth characteristics of topological insulator Bi2Se3 films on different substrates. J. Cryst. Growth 334, 96 (2011).CrossRefGoogle Scholar
Li, L., Zhang, H., Yang, Y., and Miao, G.X.: High-quality epitaxial MgB2 Josephson junctions grown by molecular beam epitaxy. Adv. Eng. Mater 19, 1600792 (2017).CrossRefGoogle Scholar
Supplementary material: File

Zhang et al. supplementary material

Figures S1-S3

Download Zhang et al. supplementary material(File)
File 149.4 KB