Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T05:23:20.375Z Has data issue: false hasContentIssue false

Transmission electron microscopy study of YNi2B2C thin film growth on MgO(001)

Published online by Cambridge University Press:  03 March 2011

G.H. Cao*
Affiliation:
Institute of Structural Physics, Dresden University of Technology, D-01062 Dresden, Germany
P. Simon
Affiliation:
Institute of Structural Physics, Dresden University of Technology, D-01062 Dresden, Germany
W. Skrotzki
Affiliation:
Institute of Structural Physics, Dresden University of Technology, D-01062 Dresden, Germany
*
a) Address all correspondence to this author. e-mail: ghcao@physik.tu-dresden.de
Get access

Abstract

A YNi2B2C thin film deposited on MgO(001) substrate by pulsed laser deposition has been investigated by transmission electron microscopy (TEM). Cross-sectional TEM analyses show that the YNi2B2C film grows in the [001] direction. Y2O3 exists not only as an interlayer at the interface of the YNi2B2C thin film and the MgO substrate but occasionally also in the YNi2B2C thin film near the substrate. The orientation relationships between the YNi2B2C thin film, Y2O3 interlayer, and MgO substrate are determined from electron-diffraction patterns to be MgO(001)[100] ‖ Y2O3(001)[100], YNi2B2C(001)[110] ‖ Y2O3(001)[100] ‖ Y2O3(001)[100, and YNi2B2C(001)[100] ‖ Y2O3(001)[100 1.5 Y2O3(001)[100] ‖ Y2O3(001)[100 (the numeral above the “parallel” symbol represents the misorientation (in degrees) between the [100] ‖ Y2O3(001)[100 directions).

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Cava, R.J., Takagi, H., Batlogg, B., Zandbergen, H.W., Krajewski, J.J., van Dover, W.F. Peck Jr.R.B., Felder, R.J., Siegrist, T., Mizuhashi, K., Lee, J.O., Eisaki, H., Carter, S.A. and Uchida, S., Superconductivity at 23K in yttrium palladium boride carbide. Nature 367, 146 (1994).CrossRefGoogle Scholar
2Cava, R.J., Takagi, H., Zandbergen, H.W., Krajewski, J.J., Peck, W.F.Jr., Siegrist, T., Batlogg, B., van Dover, R.B., Felder, R.J., Mizuhashi, K., Lee, J.O., Eisaki, H. and Uchida, S., Superconductivity in the quaternary intermetallic compounds LnNi2B2C. Nature 367, 252 (1994).CrossRefGoogle Scholar
3Mueller, K.H. and Narozhnyi, V.N., Interaction of superconductivity and magnetism in borocarbide superconductors. Rep. Prog. Phys. 64,943 (2001).CrossRefGoogle Scholar
4Andreone, A., Gassinese, A., Gianni, L., Iavarone, M., Palomba, F. and Vaglio, R., Superconducting gap anisotropy of LnNi2B2C thin films from microwave surface impedance measurements. Phys. Rev. B 64, 100505 (2001).CrossRefGoogle Scholar
5Haese, K., Wimbush, S.C., Paschen, S. and Holzapfel, B., Preparation of c -axis fibre textured YNi2B2C thin film by pulsed laser deposition: Film structure and superconducting properties. IEEE Trans. Appl. Supercond. 11, 3836 (2001).CrossRefGoogle Scholar
6Andreone, A., Iavarone, M., Vaglio, R., Manini, P. and Cogliati, E., In situ growth and superconducting properties of YNi2B2C thin films. Appl. Phys. Lett. 69, 118 (1996).CrossRefGoogle Scholar
7Arisawa, S., Hatano, T., Hirata, K., Mochinu, T., Kitaguchi, H., Fujii, H., Kumakura, H., Kadowaki, K., Nakamura, K. and Togano, K., Synthesis of YNi2B2C thin film by magnetron sputtering. Appl. Phys. Lett. 65, 1299 (1994).CrossRefGoogle Scholar
8Cimberle, M.R., Ferdeghini, C., Grassano, G., Marre, D., Pallecchi, I., Putti, M. and Siri, A.S., Deposition of c-oriented borocarbide thin film by laser ablation technique. IEEE Trans. Appl. Supercond . 9, 1727 (1999).CrossRefGoogle Scholar
9Grassano, G., Marre, D., Pallecchi, I., Ricce, F. and Ferdeghini, C., Growth of in-plane textured LnNi2B2C thin films: Correlation among structural, morphological and electrical properties. Supercond. Sci. Technol. 14, 117 (2001).CrossRefGoogle Scholar
10Wimbush, S.C., Haese, K., Schultz, L. and Holzapfel, B., Epitaxial a -axis and c -axis oriented growth of YNi2B2C thin films. J. Phys. Condens. Matter 13 L355 (2001).CrossRefGoogle Scholar
11Haese, K., Hough, D., Holzapfel, B. and Schultz, L., In situ preparation of RENi2B2C (RE-Y, Ho) thin films by pulsed laser deposition. Physica B 284–288, 1105 (2000).CrossRefGoogle Scholar
12Stadelmann, P.A., EMS—a software package for electron diffraction analysis and HREM image simulation in materials science. Ultramicroscopy 21, 131 (1987).CrossRefGoogle Scholar
13Dean, J.A., Lange’s Handbook of Chemistry (McGraw Hill, New York, 1985).Google Scholar
14Gao, H.J., Kumar, D., Cho, K.G., Holloway, P.H., Singh, R.K., Fan, X.D., Yan, Y. and Pennycook, S.J., Epitaxial growth of Y2O3:Eu thin films on LaAlO3. Appl. Phys. Lett. 75, 2223 (1999).CrossRefGoogle Scholar
15Reibold, M., Wimbush, S.C., Holzapfel, B. and Kraemer, U., Epitaxial growth of YNi2B2C films on single crystal MgO substrate: An HREM investigation of the interface. J. Alloys Comp. 347, 24 (2002).CrossRefGoogle Scholar