Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T13:09:58.990Z Has data issue: false hasContentIssue false

Transmission electron microscopy study of barium hexaferrite formation from barium carbonate and hematite

Published online by Cambridge University Press:  31 January 2011

Hanns P. Steier
Affiliation:
Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, 28049 Madrid, Spain
Joaquin Requena
Affiliation:
Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, 28049 Madrid, Spain
José S. Moya
Affiliation:
Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, 28049 Madrid, Spain
Get access

Abstract

The formation of barium hexaferrite from stoichiometric mixtures of BaCO3 and Fe2O3 has been investigated by means of differential thermal analysis and thermogravimetry, x-ray diffraction, and transmission electron microscopy–energy dispersive spectrometry. The first step, which implies decarbonatation and monoferrite formation, includes the formation of various intermediate compounds, which are formed at contact points between BaCO3 and Fe2O3 grains, and implies diffusion of both species. In the second step, barium hexaferrite is formed at interfaces between monoferrite and iron oxide mainly by diffusion of barium through the BF6 lattice into the hematite lattice. This exothermic reaction process leads to nonagglomerated pseudohexagonal platelets with an average particle size very close to the one of the starting powder mixture (∼1 μm).

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Grohs, P., Hempel, K.A., and Schumacher, F., Adv. Ceram. 16, 89 (1986).Google Scholar
2.Brahma, P., Chakravorty, D., Singh, K., and Bahadur, D., J. Mater. Sci. Let. 9, 1438 (1990).CrossRefGoogle Scholar
3.Popov, O., Rachev, P., Mikhov, M., Calderon, F., Sanchez, J.L., and Leccabue, F., J. Magn. Magn. Mater. 99, 119 (1991).CrossRefGoogle Scholar
4.Cho, K. and Kim, K-S., Korean, J.Ceram. Soc. 12(3), 13 (1975).Google Scholar
5.Ward, R. and Struthers, J.D., J. Am. Ceram. Soc. 59, 1849 (1937).Google Scholar
6.Sadler, A.G., J. Canad. Ceram. Soc. 34, 155 (1965).Google Scholar
7.Goto, Y. and Takada, T., J. Am. Ceram. Soc. 43(3), 150 (1960).CrossRefGoogle Scholar
8.Stäblein, H. and May, W., Ver. Dt. Keram. Ges. 46, 69 (1969).Google Scholar
9.Bye, G.C. and Howard, C.R., J. Appl. Chem. Biotechnol. 21, 319 (1971).CrossRefGoogle Scholar
10.Bye, G.C. and Howard, C.R., J. Appl. Chem. Biotechnol. 22, 1053 (1972).CrossRefGoogle Scholar
11.Wullkopf, H., Int. J. Magnetism. 3, 179 (1972).Google Scholar
12.Gadalla, A.M. and Hennicke, H.W., Proceedings of 3. Europ. Konf. über hartmagn. Materialien, den Haag, 62 (1974).Google Scholar
13.Mansour, N.A., Gadalla, A.M., and Hennicke, H.W.Ver. Dt. Keram. Ges. 52(7), 201 (1975).Google Scholar
14.Haberey, F., Velidescu, M., and Kockel, A., Int. J. Magnetism. 5, 161 (1973).Google Scholar
15.Schöps, W., Silikattechnik 30(7), 195 (1979).Google Scholar
16.Sadler, A.G., Westwood, W.D., and Lewis, D.C., J. Can. Ceram. Soc. 33, 127 (1964).Google Scholar
17.Saito, S., Fine Ceramics (Oshmsha Ltd., Tokyo, 1988), pp. 318335.Google Scholar