Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T01:20:42.014Z Has data issue: false hasContentIssue false

Thermomechanical effects on phase transformations in single-crystal Cu–Al–Ni shape-memory alloy

Published online by Cambridge University Press:  03 March 2011

H.-S. Zhang
Affiliation:
Department of Mechanical Engineering, University of California, Berkeley, California 94720
K. Komvopoulos*
Affiliation:
Department of Mechanical Engineering, University of California, Berkeley, California 94720
*
a) Address all correspondence to this author. e-mail: kyriakos@me.berkeley.edu
Get access

Abstract

Single-crystal rods of Cu–Al–Ni shape-memory alloy fabricated from a molten pool of 82 wt% Cu, 14 wt% Al, and 4 wt% Ni by the Czochralski method were first heated to ∼870 °C and then quenched to obtain austenitic microstructures. Various microanalysis techniques were used to determine the chemical composition, microstructure, and phase-transformation temperatures of the produced alloy. Cyclic tensile tests with in situ temperature control demonstrated the occurrence of pseudoelastic deformation at elevated and close to phase-transformation temperatures and provided insight into the temperature dependence of the phase-transformation stress, damping characteristics, and cyclic straining of single-crystal Cu–Al–Ni alloy. The stress hysteresis observed in the pseudoelastic deformation cycles decreased at elevated temperatures. The stress response at different temperatures is associated with the formation, growth, and coalescence of martensite variants. Stress-induced phase-transformation mechanisms, coalescence of twin variants, and energy dissipation by pseudoelastic deformation are discussed in the context of experimental findings. The results illustrate the potential of single-crystal Cu–Al–Ni as a structural material for dynamic microsystems and temperature sensors.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Fremond, M. and Miyazaki, S.: Shape Memory Alloys (Springer, New York, 1996).Google Scholar
2Funakubo, H.: Shape Memory Alloys translated from the Japanese by J.B. Kennedy (Gordon and Breach Science Publishers, New York, 1987).Google Scholar
3Otsuka, K., Sakamoto, H., and Shimizu, K.: Successive stress-induced martensitic transformations and associated transformation pseudoelasticity in Cu–Al–Ni alloys. Acta Metall. 27, 585 (1979).CrossRefGoogle Scholar
4Otsuka, K. and Wayman, C.M.: Shape Memory Materials (Cambridge University Press, Cambridge, 1998).Google Scholar
5Otsuka, K., Sakamoto, H., and Shimizu, K.: Two stage superelasticity associated with successive martensite-to-martensite transformations. Scripta Metall. 10, 983 (1976).CrossRefGoogle Scholar
6Liu, Y., Xie, Z.L., Van Humbeeck, J., and Delaey, L.: Effect of texture orientation on the martensite deformation of NiTi shape memory alloy sheet. Acta Mater. 47, 645 (1999).CrossRefGoogle Scholar
7Sehitoglu, H., Jun, J., Zhang, X., Karaman, I., Chumlyakov, Y., Maier, H.J., and Gall, K.: Shape memory and pseudoelastic behavior of 51.5%Ni–Ti single crystals in solutionized and overaged state. Acta Mater. 49, 3609 (2001).CrossRefGoogle Scholar
8Sehitoglu, H., Karaman, I., Anderson, R., Zhang, X., Gall, K., Maier, H.J., and Chumlyakov, Y.: Compressive response of NiTi single crystals. Acta Mater. 48, 3311 (2000).CrossRefGoogle Scholar
9Huang, W.: On the selection of shape memory alloys for actuators. Mater. Des. 23, 11 (2002).Google Scholar
10Šittner, P., Hashimoto, K., Kato, M., and Tokuda, M.: Stress induced martensitic transformations in tension/torsion of CuAlNi single crystal tube. Scripta Mater. 48, 1153 (2003).CrossRefGoogle Scholar
11Zhang, X., Sun, Q., and Yu, S.: A non-invariant plane model for the interface in CuAlNi single crystal shape memory alloys. J. Mech. Phys. Solids 48, 2163 (2000).Google Scholar
12Sittner, P., Novák, V., and Zárubová, N.: Deformation by moving interfaces from single crystal experiments to the modeling of industrial SMA. Int. J. Mech. Sci. 40, 159 (1998).CrossRefGoogle Scholar
13Šittner, P. and Novák, V.: Anisotropy of martensitic transformations in modeling of shape memory alloy polycrystals. Int. J. Plast. 16, 1243 (2000).CrossRefGoogle Scholar
14Otsuka, K., Sakamoto, H., and Shimizu, K.: Martensitic transformations between martensites in a Cu–Al–Ni alloy. Scripta Metall. 9, 491 (1975).CrossRefGoogle Scholar
15Novák, V., Malimánek, J., and Zárubová, N.: Martensitic transformations in single crystals of Cu–Al–Ni induced by tensile stress. Mater. Sci. Eng. A 191, 193 (1995).CrossRefGoogle Scholar
16Duggin, M.J. and Rachinger, W.A.: The nature of the martensite transformation in a copper–nickel–aluminium alloy. Acta Metall. 12, 529 (1964).CrossRefGoogle Scholar
17Brezina, P.: Heat treatment of complex aluminium bronzes. Int. Metals Rev. 27, 77 (1982).Google Scholar
18Chen, C.H. and Liu, T.F.: Phase transformations in a Cu–14.2Al–15.0Ni alloy. Mater. Chem. Phys. 78, 464 (2002).CrossRefGoogle Scholar
19Zárubová, N., Gemperle, A., and Novák, V.: Initial stages of γ2 precipitation in an aged Cu–Al–Ni shape memory alloy. Mater. Sci. Eng. A 222, 166 (1997).Google Scholar
20Tan, J. and Liu, T.F.: As-quenched microstructures of Cu–14.2Al–xNi alloys. Scripta Mater. 43, 1083 (2000).CrossRefGoogle Scholar
21Chen, C.H. and Liu, T.F.: Phase transformations in a Cu–14.2Al–12.0Ni alloy. Scripta Mater. 47, 515 (2002).Google Scholar
22Tanner, L.E., Pelton, A.R., and Gronsky, R.: The characterization of pretransformation morphologies: Periodic strain modulations. J. Phys. 43(C4, 12), 169 (1982).Google Scholar
23Pelosin, V., Gerland, M., Covarel, G., and Riviève, A.: First stages of martensitic growth studied by TEM in a Cu–Al–Ni single crystal and associated mechanical spectroscopy instabilities. Eur. Phys. J. App. Phys. 16, 175 (2001).CrossRefGoogle Scholar
24Gall, K., Sehitoglu, H., Chumlyakov, Y.I., and Kireeva, I.V.: Tension-compression asymmetry of the stress–strain response in aged single crystal and polycrystalline NiTi. Acta Mater. 47, 1203 (1999).Google Scholar
25Gastien, R., Corbellani, C.E., Sade, M., and Lovey, F.C.: Thermodynamical aspects of martensitic transformations in CuAlNi single crystals. Scripta Mater. 50, 1103 (2004).Google Scholar
26Duerig, T.W., Melton, K.N., Stöckel, D., and Wayman, C.M.: Engineering Aspects of Shape Memory Alloys (Butterworth-Heinemann, London, 1990).Google Scholar
27Font, J., Cesari, E., Muntasell, J., and Pons, J.: Thermomechanical cycling in Cu–Al–Ni-based melt-spun shape-memory ribbons. Mater. Sci. Eng. A 354, 207 (2003).Google Scholar
28Picornell, C., Pons, J., and Cesari, E.: Stress-temperature relationship in Cu–Al–Ni single crystals in compression mode. Mater. Sci. Eng. A 378, 222 (2004).Google Scholar
29Picornell, C., Pons, J., and Cesari, E.: Stabilisation of martensite by applying compressive stress in Cu–Al–Ni single crystals. Acta Mater. 49, 4221 (2001).Google Scholar
30Abdullah, N., Kastner, O., Müller, I., Musolff, A., Xu, H., and Zak, G.: Observations on CuAlNi single crystals. Int. J. Non-Linear Mech. 37, 1263 (2002).CrossRefGoogle Scholar
31Aydogdu, Y., Aydogdu, A., and Adiguzel, O.: Self-accommodating martensite plate variants in shape memory CuAlNi alloys. J. Mater. Proc. Technol. 123, 498 (2002).Google Scholar
32Fang, D.-N., Lu, W., and Hwang, K.-C.: Pseudoelastic behavior of a CuAlNi single crystal under uniaxial loading. Metall. Mater. Trans. A 30A, 1933 (1999).CrossRefGoogle Scholar
33Hamilton, R.F., Sehitoglu, H., Chumlyakov, Y., and Maier, H.J.: Stress dependence of the hysteresis in single crystal NiTi alloys. Acta Mater. 52, 3383 (2004).Google Scholar
34Zhang, S. and McCormick, P.G.: Thermodynamic analysis of shape memory phenomena—I. Effect of transformation plasticity on elastic strain energy. Acta Mater. 48, 3081 (2000).Google Scholar