Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T22:03:28.052Z Has data issue: false hasContentIssue false

Thermochemistry of glass forming Y-substituted Sr-analogues of titanite (SrTiSiO5)

Published online by Cambridge University Press:  31 January 2011

Tae-Jin Park
Affiliation:
Peter A. Rock Thermochemistry Laboratory, University of California at Davis, Davis, California 95616; and NEAT ORU, University of California at Davis, Davis, California 95616
Simon Li
Affiliation:
Peter A. Rock Thermochemistry Laboratory, University of California at Davis, Davis, California 95616; and NEAT ORU, University of California at Davis, Davis, California 95616
Alexandra Navrotsky*
Affiliation:
Peter A. Rock Thermochemistry Laboratory, University of California at Davis, Davis, California 95616; and NEAT ORU, University of California at Davis, Davis, California 95616
*
a) Address all correspondence to this author. e-mail: anavrotsky@ucdavis.edu
Get access

Abstract

Strontium titanium silicates are possible oxide forms for immobilization of short lived fission products in radioactive waste. Through beta decay, strontium decays to yttrium, and then to zirconium. Therefore, not only the stability of Sr-loaded waste forms, but also that of a potential decay product series with charge-balance in a naturally occurring mineral or a ceramic is of fundamental importance. Strontium titanosilicate (SrTiSiO5) is the Sr-analogue of titanite (CaTiSiO5). To incorporate the reaction 3Sr2+ = 2Y3+ + vacancy in the titanite composition, Y-substituted Sr-analogues of titanite, (Sr1–xY2/3x)TiSiO5 (x = 0, 0.25, 0.5, 0.75) were prepared by high temperature synthesis and were found to form glass upon cooling. The Y-end-member (Y2/3TiSiO5, x = 1) crystallized to a mixture of Y2TiSiO7, TiO2, and SiO2 upon quenching in air. The enthalpies of formation of Y-substituted Sr-titanite glasses were obtained from drop solution calorimetry in a molten lead borate (2PbO·B2O3) solvent at 702 °C. The enthalpies of formation from constituent oxides are exothermic but become less so with increasing Y content. The thermodynamic stability of the Y-substituted Sr-analogue of crystalline titanite may become marginal with increasing yttrium content.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Fiskum, S.K., Blanchard, D.L., Arm, S.T., and Peterson, R.A.: Cesium removal from simulated and actual hanford tank waste using ion exchange. Sep. Sci. Technol. 40(1–3), 51 (2005).Google Scholar
2.Sylvester, P., Behrens, E.A., Graziano, G.M., and Clearfield, A.: An assessment of inorganic ion-exchange materials for the removal of strontium from simulated hanford tank wastes. Sep. Sci. Technol. 34(10), 1981 (1999).Google Scholar
3.Ewing, R.C.: Nuclear fuel cycle: Environmental impact. MRS Bull. 33(4), 338 (2008).Google Scholar
4.Kuznicki, S.M., Bell, V.A., Nair, S., Hillhouse, H.W., Jacubinas, R.M., Braunbarth, C.M., Toby, B.H., and Tsapatsis, M.: A titanosilicate molecular sieve with adjustable pores for size-selective adsorption of molecules. Nature 412(6848), 720 (2001).Google Scholar
5.Hayward, P.J., Vance, E.R., Cann, C.D., and Doern, D.C.: Crystallization of titanosilicate glasses for nuclear waste immobilization. J. Am. Ceram. Soc. 72(4), 579 (1989).Google Scholar
6.Anderson, M.W., Terasaki, O., Ohsuna, T., Philippou, A., MacKay, S.P., Ferreira, A., Rocha, J., and Lidin, S.: Structure of the microporous titanosilicate ETS-10. Nature 367(6461), 347 (1994).Google Scholar
7.Nyman, M., Bonhomme, F., Teter, D.M., Maxwell, R.S., Gu, B.X., Wang, L.M., Ewing, R.C., and Nenoff, T.M.: Integrated experimental and computational methods for structure determination and characterization of a new, highly stable cesium silicotitanate phase, Cs2TiSi6O15(SNL-A). Chem. Mater. 12(11), 3449 (2000).Google Scholar
8.Poojary, D.M., Cahill, R.A., and Clearfield, A.: Synthesis, crystal structures, and ion-exchange properties of a novel porous titanosilicate. Chem. Mater. 6(12), 2364 (1994).Google Scholar
9.Weber, J.W., Navrotsky, A., Stefanovsky, S., Vance, E.R., and Vernaz, E.: Materials science of high-level nuclear waste immobilization. MRS Bull. 34(1), 46 (2009).Google Scholar
10.Ringwood, A.E., Kesson, S.E., Ware, N.G., Hibberson, W., and Major, A.: Immobilisation of high level nuclear reactor wastes in SYNROC. Nature 278(5701), 219 (1979).Google Scholar
11.Nyman, M., Bonhomme, F., Maxwell, R.S., and Nenoff, T.M.: First Rb silicotitanate phase and its K-structural analogue: New members of the SNL-A family (Cc-A2TiSi6O15; A = K, Rb, Cs). Chem. Mater. 13(12), 4603 (2001).Google Scholar
12.Poojary, D.M., Bortun, A.I., Bortun, L.N., and Clearfield, A.: Structural studies on the ion-exchanged phases of a porous titanosilicate Na2Ti2O3SiO42H2O. Inorg. Chem. 35(21), 6131 (1996).Google Scholar
13.Celestian, A.J., Kubicki, J.D., Hanson, J., Clearfield, A., and Parise, J.B.: The mechanism responsible for extraordinary Cs ion selectivity in crystalline silicotitanate. J. Am. Chem. Soc. 130(35), 11689 (2008).Google Scholar
14.Xu, H., Navrotsky, A., Balmer, M.L., and Su, Y.: Crystal chemistry and phase transitions in substituted pollucites along the CsAlSi2O6-CsTiSi2O6.5join: A powder synchrotron x-ray diffractometry study. J. Am. Ceram. Soc. 85(5), 1235 (2002).Google Scholar
15.Xu, H., Navrotsky, A., Balmer, M.L., Su, Y., and Bitten, E.R.: Energetics of substituted pollucites along the CsAlSi2O6-CsTiSi2O6.5 join: A high-temperature calorimetric study. J. Am. Ceram. Soc. 84(3), 555 (2001).Google Scholar
16.Ellison, A.J.G. and Navrotsky, A.: Thermochemistry and structure of model waste glass compositions (Mater. Res. Soc. Symp. Proc. 176, Warrendale, PA, 1990), p. 193.Google Scholar
17.Weber, W.J., Ewing, R.C., Angell, C.A., Arnold, G.W., Cormack, A., Delaye, J.M., Griscom, D.L., Hobbs, L.W., Navrotsky, A., Price, D.L., Stoneham, A.M., and Weinberg, M.C.: Radiation effects in glasses used for immobilization of high-level waste and plutonium disposition. J. Mater. Res. 12(8), 1946 (1997).Google Scholar
18.Hrma, P. and Kruger, A.A.: Nuclear waste glasses: Continuous melting and bulk vitrification. Adv. Mater. Res. 39–40, 633 (2008).Google Scholar
19. H. Römich: Studies of ancient glass and their application to nuclear-waste management. MRS Bull. 28(7), 500 (2003).Google Scholar
20.Hayward, P.J., Doern, D.C., and George, I.M.: Dissolution of a sphene glass-ceramic, and its component sphene and glass phases, in Ca-Na-Cl brines. J. Am. Ceram. Soc. 73(3), 544 (1990).Google Scholar
21.Stefanovsky, S.V., Yudintsev, S.V., Nikonov, B.S., Omelianenko, B.I., and Lapina, M.I.: Isomorphic capacity of synthetic sphene with respect to Gd and U. (Mater. Res. Soc. Symp. Proc. 608, 2000), p. 455.Google Scholar
22.Bancroft, G.M., Metson, J.B., Kanetkar, S.M., and Brown, J.D.: Surface studies on a leached sphene glass. Nature 299, 708 (1982).Google Scholar
23.Clearfield, A., Tripathi, A., Medvedev, D., Celestian, A.J., and Parise, J.B.: In situ type study of hydrothermally prepared titanates and silicotitanates. J. Mater. Sci. 41(5), 1325 (2006).Google Scholar
24.Xirouchakis, D., Fritsch, S., Putnam, R.L., Navrotsky, A., and Lindsley, D.H.: Thermochemistry and the enthalpy of formation of synthetic end-member (CaTiSiO5) titanite. Am. Mineral. 82(7–8),754 (1997).Google Scholar
25.McNaught, A.D. and Wilkinson, A.: IUPAC Compendium of Chemical Terminology, 2nd ed. (Blackwell Science), 1997.Google Scholar
26.L'Annunziata, M.F.: Birth of an unique parent-daughter relation: Secular equilibrium. An experiment in radioisotope techniques. J. Chem. Educ. 48(10), 700 (1971).Google Scholar
27.Bera, J. and Rout, S.K.: SrTiO3-SrZrO3solid solution: Phase formation kinetics and mechanism through solid-oxide reaction. Mater. Res. Bull. 40, 1187 (2005).Google Scholar
28.Wong, T.K-Y., Kennedy, B.J., Howard, C.J., Hunter, B.A., and Vogt, T.: Crystal structures and phase transitions in the SrTiO3- SrZrO3solid solution. J. Solid State Chem. 156, 255 (2001).Google Scholar
29.Liferovich, R.P. and Mitchell, R.H.: Crystal chemistry of titanitestructured compounds: The CaTi1–xZrxOSiO4(x≤0.5) series. Phys. Chem. Miner. 32, 40 (2005).Google Scholar
30.Mraw, S.: Specific heat of solids, in CINDAS Data Series on Material Properties, vol. 1–2, edited by Ho, C.Y. (Hemisphere, New York, 1988), p. 395.Google Scholar
31.Navrotsky, A.: Progress and new directions in high temperature calorimetry revisited. Phys. Chem. Miner. 24(3), 222 (1997).Google Scholar
32.Navrotsky, A.: Progress and new directions in high temperature calorimetry. Phys. Chem. Miner. 2(1–2), 89 (1977).Google Scholar
33.Park, T-J. and Navrotsky, A.: Thermochemistry of Y-substituted Sr-analogue of fresnoite (Sr2TiSi2O8) waste forms for radioactive Sr and decay products. (Unpublished data, 2009).Google Scholar
34.Park, T-J., Davis, M.J., Vullo, P., Nenoff, T.M., Krumhansl, J.L. and Navrotsky, A.: Thermochemistry and aqueous durability of ternary glass forming Ba-titanosilicates: Fresnoite (Ba2TiSi2O8) and Ba-titanite (BaTiSiO5). J. Am. Ceram. Soc. 92(9), 2053 (2009).Google Scholar
35.Masai, H., Tsuji, S., Fujiwara, T., Benino, Y., and Komatsu, T.: Structure and non-linear optical properties of BaO-TiO2-SiO2 glass containing Ba2TiSi2O8crystal. J. Non-Cryst. Solids 353 (22–23), 2258 (2007).Google Scholar
36.Xu, H., Navrotsky, A., Su, Y., and Balmer, M.L.: Perovskite solid solutions along the NaNbO-SrTiO join: Phase transitions, formation enthalpies, and implications for general perovskite energetics. Chem. Mater. 17(7), 1880 (2005).Google Scholar
37.Zhou, Z. and Navrotsky, A.: Thermochemistry of the Y2O3-BaOCu- O system. J. Mater. Res. 7(11), 2920 (1992).Google Scholar
38.Putnam, R.L., Navrotsky, A., Woodfield, B.F., Boerio-Goates, J., and Shapiro, J.L.: Thermodynamics of formation for zirconolite (CaZrTi2O7) from T = 298.15 K to T = 1500 K. J. Chem. Thermodyn. 31(2), 229 (1999).Google Scholar
39.Kiseleva, I., Navrotsky, A., Belitsky, I.A., and Fursenko, B.A.: Thermochemistry and phase equilibria in calcium zeolites. Am. Mineral. 81(5–6), 658 (1996).Google Scholar
40.Robie, R.A. and Hemingway, B.S.: Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105Pascals) pressure and higher temperatures. U.S. Geol. Surv. Bull. 2131, 461 (1995).Google Scholar