Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T21:49:08.793Z Has data issue: false hasContentIssue false

Thermal transport in 3D pillared SWCNT–graphene nanostructures

Published online by Cambridge University Press:  21 January 2013

Jungkyu Park*
Affiliation:
Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106-7222
Vikas Prakash*
Affiliation:
Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106-7222
*
a)Address all correspondence to this author. e-mail: vikas.prakash@case.edu
Get access

Abstract

We present results of a molecular dynamics study using adaptive intermolecular reactive empirical bond order interatomic potential to analyze thermal transport in three-dimensional pillared single-walled carbon nanotube (SWCNT)–graphene superstructures comprised of unit cells with graphene floors and SWCNT pillars. The results indicate that in-plane as well as out-of-plane thermal conductivity in these superstructures can be tuned by varying the interpillar distance and/or the pillar height. The simulations also provide information on thermal interfacial resistance at the graphene–SWCNT junctions in both the in-plane and out-of-plane directions. Among the superstructures analyzed, the highest effective (based on the unit cell cross-sectional area) in-plane thermal conductivity was 40 W/(m K) with an out-of-plane thermal conductivity of 1.0 W/(m K) for unit cells with an interpillar distance Dx = 3.3 nm and pillar height Dz = 1.2 nm, while the highest out-of-plane thermal conductivity was 6.8 W/(m K) with an in-plane thermal conductivity of 6.4 W/(m K) with Dx = 2.1 nm and Dz= 4.2 nm.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Berber, S., Kwon, Y.K., and Tomanek, D.: Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 84(20), 4613 (2000).CrossRefGoogle ScholarPubMed
Yu, C.H., Shi, L., Yao, Z., Li, D.Y., and Majumdar, A.: Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Lett. 5(9), 1842 (2005).CrossRefGoogle ScholarPubMed
Pop, E., Mann, D., Wang, Q., Goodson, K., and Dai, H.J.: Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 6(1), 96 (2006).CrossRefGoogle ScholarPubMed
Che, J.W., Cagin, T., and Goddard, W.A.: Thermal conductivity of carbon nanotubes. Nanotechnology 11(2), 65 (2000).CrossRefGoogle Scholar
Balandin, A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., and Lau, C.N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902 (2008).CrossRefGoogle ScholarPubMed
Hu, J., Ruan, X., and Chen, Y.P.: Thermal conductivity and thermal rectification in graphene nanoribbons: A molecular dynamics study. Nano Lett. 9(7), 2730 (2009).CrossRefGoogle ScholarPubMed
Cai, W., Moore, A.L., Zhu, Y., Li, X., Chen, S., Shi, L., and Ruoff, R.S.: Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 10(5), 1645 (2010).CrossRefGoogle ScholarPubMed
Sun, K., Stroscio, M.A., and Dutta, M.: Thermal conductivity of carbon nanotubes. J. Appl. Phys. 105(7), 074316 (2009).CrossRefGoogle Scholar
Varshney, V., Patnaik, S., Roy, A., Froudakis, G., and Farmer, B.L.: Modeling thermal transport in pillared-graphene architectures. ACS Nano 4(2), 1153 (2010).CrossRefGoogle ScholarPubMed
Loh, G.C., Teo, E.H.T., and Tay, B.K.: Interpillar phononics in pillared-graphene hybrid nanostructures. J. Appl. Phys. 110(8), 083502 (2011).CrossRefGoogle Scholar
Loh, G.C., Teo, E.H.T., and Tay, B.K.: Tuning the Kapitza resistance in pillared-graphene nanostructures. J. Appl. Phys. 111(1), 013515 (2012).CrossRefGoogle Scholar
Fan, Z., Yan, J., Zhi, L., Zhang, Q., Wei, T., Feng, J., Zhang, M., Qian, W., and Wei, F.: A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv. Mater. 22(33), 3723 (2010).CrossRefGoogle ScholarPubMed
Du, F., Yu, D.S., Dai, L.M., Ganguli, S., Varshney, V., and Roy, A.K.: Preparation of tunable 3D pillared carbon nanotube-graphene networks for high-performance capacitance. Chem. Mater. 23(21), 4810 (2011).CrossRefGoogle Scholar
Parker, C.B., Raut, A.S., Brown, B., Stoner, B.R., and Glass, J.T.: Three-dimensional arrays of graphenated carbon nanotubes. J. Mater. Res. 27(7), 1046 (2012).CrossRefGoogle Scholar
Paul, R.K., Ghazinejad, M., Penchev, M., Lin, J., Ozkan, M., and Ozkan, C.S.: Synthesis of a pillared graphene nanostructure: A counterpart of three-dimensional carbon architectures. Small 6(20), 2309 (2010).CrossRefGoogle ScholarPubMed
Zhang, W.M., Sherrell, P., Minett, A.I., Razal, J.M., and Chen, J.: Carbon nanotube architectures as catalyst supports for proton exchange membrane fuel cells. Energy Environ. Sci. 3(9), 1286 (2010).CrossRefGoogle Scholar
Dimitrakakis, G.K., Tylianakis, E., and Froudakis, G.E.: Pillared graphene: A new 3-D network nanostructure for enhanced hydrogen storage. Nano Lett. 8(10), 3166 (2008).CrossRefGoogle ScholarPubMed
Varshney, V., Patnaik, S.S., Roy, A.K., Froudakis, G., and Farmer, B.L.: Modeling of thermal transport in pillared-graphene architectures. ACS Nano 4(2), 1153 (2010).CrossRefGoogle ScholarPubMed
Müller-Plathe, F.: A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J. Chem. Phys. 106(14), 6082 (1997).CrossRefGoogle Scholar
Stuart, S.J., Tutein, A.B., and Harrison, J.A.: A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112(14), 6472 (2000).CrossRefGoogle Scholar
Gonzalez, J., Guinea, F., and Herrero, J.: Propagating, evanescent, and localized states in carbon nanotube-graphene junctions. Phys. Rev. B. 79(16), 165434 (2009).CrossRefGoogle Scholar
Gonzalez, J. and Herrero, J.: Graphene wormholes: A condensed matter illustration of Dirac fermions in curved space. Nucl. Phys. B. 825(3), 426 (2010).CrossRefGoogle Scholar
Plimpton, S.: Fast parallel algorithms for short-range molecular-dynamics. J. Comput. Phys. 117(1), 119 (1995).Google Scholar
Izaguirre, J.A., Catarello, D.P., Wozniak, J.M., and Skeel, R.D.: Langevin stabilization of molecular dynamics. J. Chem. Phys. 114(5), 2090 (2001).CrossRefGoogle Scholar
Bagri, A., Kim, S.P., Ruoff, R.S., and Shenoy, V.B.: Thermal transport across twin grain boundaries in polycrystalline graphene from nonequilibrium molecular dynamics simulations. Nano Lett. 11(9), 3917 (2011).CrossRefGoogle ScholarPubMed
Schelling, P.K., Phillpot, S.R., and Keblinski, P.: Comparison of atomic-level simulation methods for computing thermal conductivity. Phys. Rev. B. 65(14), 144306 (2002).CrossRefGoogle Scholar
Klemens, P.G.: Theory of thermal conduction in thin ceramic films. Int. J. Thermophys. 22(1), 265 (2001).CrossRefGoogle Scholar
McGaughey, A.J.H. and Jain, A.: Nanostructure thermal conductivity prediction by Monte Carlo sampling of phonon free paths. Appl. Phys. Lett. 100(6), 061911 (2012).CrossRefGoogle Scholar
Ghosh, S., Calizo, I., Teweldebrhan, D., Pokatilov, E.P., Nika, D.L., Balandin, A.A., Bao, W., Miao, F., and Lau, C.N.: Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 92(15), 151911 (2008).CrossRefGoogle Scholar
Thomas, J.A., Iutzi, R.M., and McGaughey, A.J.H.: Thermal conductivity and phonon transport in empty and water-filled carbon nanotubes. Phys. Rev. B. 81(4), 045413 (2010).CrossRefGoogle Scholar
Donadio, D. and Galli, G.: Thermal conductivity of isolated and interacting carbon nanotubes: Comparing results from molecular dynamics and the Boltzmann transport equation. Phys. Rev. Lett. 99(25), 255502 (2007).CrossRefGoogle ScholarPubMed
Maruyama, S.: A molecular dynamics simulation of heat conduction in finite length SWNTs. Physica B 323(1–4), 193 (2002).CrossRefGoogle Scholar
Osman, M.A. and Srivastava, D.: Temperature dependence of the thermal conductivity of single-wall carbon nanotubes. Nanotechnology 12(1), 21 (2001).CrossRefGoogle Scholar
Padgett, C.W. and Brenner, D.W.: Influence of chemisorption on the thermal conductivity of single-wall carbon nanotubes. Nano Lett. 4(6), 1051 (2004).CrossRefGoogle Scholar
Lindsay, L. and Broido, D.A.: Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys. Rev. B. 81(20), 205441 (2010).CrossRefGoogle Scholar
Evans, W.J., Hu, L., and Keblinski, P.: Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: Effect of ribbon width, edge roughness, and hydrogen termination. Appl. Phys. Lett. 96(20), 203112 (2010).CrossRefGoogle Scholar
Jauregui, L.A., Yue, Y., Sidorov, A.N., Hu, J., Yu, Q., Lopez, G., Jalilian, R., Benjamin, D.K., Delkd, D.A., Wu, W., Liu, Z., Wang, X., Jiang, Z., Ruan, X., Bao, J., Pei, S.S., and Chen, Y.P.: Thermal transport in graphene nanostructures: Experiments and simulations, in ECS Transactions: 217th ECS Meeting, edited by Srinivasan, Z.K.P., Obeng, Y., De-Gendt, S., and Misra, D. (The Electrochemical Society, 2010); p. 73.Google Scholar
Murali, R., Yang, Y.X., Brenner, K., Beck, T., and Meindl, J.D.: Breakdown current density of graphene nanoribbons. Appl. Phys. Lett. 94(24), 243114 (2009).CrossRefGoogle Scholar
Seol, J.H., Jo, I., Moore, A.L., Lindsay, L., Aitken, Z.H., Pettes, M.T., Li, X., Yao, Z., Huang, R., Broido, D., Mingo, N., Ruoff, R.S., and Shi, L.: Two-dimensional phonon transport in supported graphene. Science 328(5975), 213 (2010). Vancouver, Canada.CrossRefGoogle ScholarPubMed
Tersoff, J.: Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Phys. Rev. B. 39(8), 5566 (1989).CrossRefGoogle ScholarPubMed
Donadio, D. and Galli, G.: Thermal conductivity of isolated and interacting carbon nanotubes: Comparing results from molecular dynamics and the Boltzmann transport equation. Phys. Rev. Lett. 103(14), 149901 (2009).CrossRefGoogle Scholar
Munoz, E., Lu, J.X., and Yakobson, B.I.: Ballistic thermal conductance of graphene ribbons. Nano Lett. 10(5), 1652 (2010).CrossRefGoogle ScholarPubMed
Saito, K., Nakamura, J., and Natori, A.: Ballistic thermal conductance of a graphene sheet. Phys. Rev. B. 76(11), 115409 (2007).CrossRefGoogle Scholar
Mingo, N. and Broido, D.A.: Carbon nanotube ballistic thermal conductance and its limits. Phys. Rev. Lett. 95(9), 096105 (2005).CrossRefGoogle ScholarPubMed
Lee, J., Varshney, V., Brown, J.S., Roy, A.K. and Farmer, B.L.: Single mode phonon scattering at carbon nanotube-graphene junction in pillared graphene structure. Appl. Phys. Lett. 100(18), 183111 (2012).CrossRefGoogle Scholar