Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T21:52:57.089Z Has data issue: false hasContentIssue false

Thermal properties of a prospective thermal barrier material: Yb3Al5O12

Published online by Cambridge University Press:  10 November 2014

Xiaofei Wang
Affiliation:
Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; and Science and Technology on Advanced Functional Composite Laboratory, Aerospace Research Institute of Materials & Processing Technology, Beijing 100076, China
Huimin Xiang
Affiliation:
Science and Technology on Advanced Functional Composite Laboratory, Aerospace Research Institute of Materials & Processing Technology, Beijing 100076, China
Xin Sun
Affiliation:
Science and Technology on Advanced Functional Composite Laboratory, Aerospace Research Institute of Materials & Processing Technology, Beijing 100076, China
Jiachen Liu
Affiliation:
Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
Feng Hou*
Affiliation:
Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
Yanchun Zhou*
Affiliation:
Science and Technology on Advanced Functional Composite Laboratory, Aerospace Research Institute of Materials & Processing Technology, Beijing 100076, China
*
a)Address all correspondence to this author. e-mail: yczhou@imr.ac.cn, yczhou714@gmail.com
Get access

Abstract

In this article, a comprehensive investigation on the thermal properties of Yb3Al5O12 is conducted, including Debye temperature, thermal expansion coefficient (TEC), thermal diffusivity, heat capacity, and thermal conductivity. The calculated Debye temperature of Yb3Al5O12 from the measured elastic properties is 625 K. The linear and volumetric thermal expansions of Yb3Al5O12 from 298 to 1273 K are (7.83 ± 0.14) × 10−6 and (23.74 ± 0.42) × 10−6 K−1, respectively. The linear TEC of the polycrystalline bulk Yb3Al5O12 determined by dilatometer is (8.22 ± 0.3) × 10−6 K−1. The measured thermal conductivities of Yb3Al5O12 are 4.67 and 2.05 W (m K)−1, respectively, at 300 and 1400 K. The estimated minimum thermal conductivity, κmin, is 1.22 W (m K)−1. The high temperature thermal conductivity is close to the evaluated κmin, which is lower than most commonly used thermal barrier coating (TBC) material such as Y2O3-stabilized-ZrO2 (YSZ). The unique combination of these properties renders Yb3Al5O12 being a very promising candidate material for TBC.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Miller, R.A.: Current status of thermal barrier coatings – An overview. Surf. Coat. Technol. 30(1), 1 (1987).Google Scholar
Meier, S.M., Gupta, D.K., and Sheffler, K.D.: Ceramic thermal barrier coatings for commercial gas turbine engines. JOM 43, 50 (1991).CrossRefGoogle Scholar
Clarke, D.R., Oechsner, M., and Padture, N.P.: Thermal-barrier coatings for more efficient gas-turbine engines. MRS. Bull. 37, 891 (2012).Google Scholar
Clarke, D.R. and Levi, C.G.: Materials design for the next generation thermal barrier coatings. Annu. Rev. Mater. Res. 33, 383 (2003).Google Scholar
Padture, N.P., Gell, M., and Jordan, E.H.: Thermal barrier coatings for gas-turbine engine applications. Science 296, 280 (2002).Google Scholar
Slifka, A.J., Filla, B.J., Phelps, J.M., Bancke, G., and Berndt, C.C.: Thermal conductivity of a zirconia thermal barrier coating. J. Therm. Spray Technol. 7(1), 43 (1998).Google Scholar
Tamura, M., Takahashi, M., Ishii, J., Suzuki, K., Sato, M., and Shimomura, K.: Multilayered thermal barrier coating for landbased gas turbines. J. Therm. Spray Technol. 8(1), 68 (1999).Google Scholar
Zhan, X., Li, Z., Liu, B., Wang, J.Y., Zhou, Y.C., and Hu, Z.J.: Theoretical prediction of elastic stiffness and minimum lattice thermal conductivity of Y3Al5O12, YAlO3, and Y4Al2O9 . J. Am. Ceram. Soc. 95(4), 1429 (2012).Google Scholar
Miller, R.A., Smialek, J.L., and Garlick, R.G.: Phase stability in plasma sprayed partially stabilized zirconia-yttria. In Science and Technology of Zirconia, Advances in Ceramics, Heuer, A.H. and Hobbs, L.W. eds.; American Ceramic Society: Columbus, OH, Vol. 3, 1981; pp. 241251.Google Scholar
Clarke, D.R. and Phillpot, S.R.: Thermal barrier coatings materials. Mater. Today 6, 22 (2005).Google Scholar
Ramaswamy, P., Seetharamu, S., Varma, K.B.R., and Rao, K.J.: Thermal shock characteristics of plasma sprayed mullite coatings. J. Therm. Spray Technol. 7(4), 497 (1999).Google Scholar
Pan, W., Phillpot, S.R., Wan, C.L., Chernatynskiy, A., and Qu, Z.X.: Low thermal conductivity oxides. MRS. Bull. 37, 917 (2012).CrossRefGoogle Scholar
Zhou, Y.C., Xiang, H.M., and Feng, Z.H.: Theoretical investigations on mechanical and thermal properties of a promising thermal barrier material: Yb3Al5O12 . J. Mater. Sci. Technol. 30, 631 (2014).Google Scholar
Klemm, H.: Silicon nitride for high-temperature applications. J. Am. Ceram. Soc. 93(6), 1501 (2010).Google Scholar
Mizuno, M. and Noguchi, T.: Phase diagram of the system Al2O3-Yb2O3 at high temperatures. Yogyo Kyokaishi 88(6), 322 (1980).Google Scholar
Dubnikova, N., Garskaite, E., Beganskiene, A., and Kareiva, A.: Sol-gel synthesis and characterization of sub-microsized lanthanide (Ho, Tm, Yb, Lu) aluminium garnets. Opt. Mater. 33, 1179 (2011).Google Scholar
Wu, Y.S., Li, J., Pan, Y.B., Liu, Q., and Guo, J.K.: Synthesis of nano-sized Yb3Al5O12 powders by the urea co-precipitation method. Ceram. Int. 35, 25 (2009).Google Scholar
Chani, V.I., Yoshikawa, A., Machida, H., and Fukuda, T.: (Tb, Yb)3Al5O12 garnet: Crystal-chemistry and fiber growth by micro-pulling-down technique. Mater. Sci. Eng., B 75, 53 (2003).CrossRefGoogle Scholar
Xu, X., Zhao, Z., Xu, J., and Deng, P.: Crystal growth and spectral properties of Yb3Al5O12 . J. Cryst. Growth 257, 272 (2003).Google Scholar
Wang, X.F., Xiang, H.M., Sun, X., Liu, J.C., Hou, F., and Zhou, Y.C.: Synthesis, characterization, and sintering behavior of Yb3Al5O12 powders. Ceram. Int. 41, 1735 (2015).Google Scholar
Wang, X.F., Xiang, H.M., Sun, X., Liu, J.C., Hou, F., and Zhou, Y.C.: Mechanical properties and damage tolerance of a promising thermal barrier coating material: Yb3Al5O12 . J. Mater. Sci. Technol. (2014, submitted).Google Scholar
ASTM E 1461-01: Standard Test Method for Thermal Diffusivity by Flash Method (ASTM International, West Conshohocken, PA, 2001).Google Scholar
Parker, W.J., Jenkins, R.J., Butler, C.P., and Abbott, G.L.: Flash method of determining thermal diffusivity, heat capacity and thermal conductivity. J. Appl. Phys. 32, 1679 (1961).CrossRefGoogle Scholar
Agari, Y., Ueda, A., and Nagai, S.: Measurement of thermal diffusivity and specific heat capacity of polymers by laser flash method. J. Polym. Sci. B 33, 33 (1995).Google Scholar
Ronchi, C., Sheindlin, M., and Musella, M.: Thermal conductivity of uranium dioxide up to 2900 K from simultaneous measurements of the heat capacity and thermal diffusivity. J. Appl. Phys. 85, 776 (1999).Google Scholar
Shinzato, K. and Baba, T.: A laser flash apparatus for thermal diffusivity and specific heat capacity measurements. J. Therm. Anal. Calorim. 64, 413 (2001).Google Scholar
Hayashi, K., Kyaw, T.M., and Okamoto, Y.: Thermal properties of mullite partially stabilized zirconia composites. High-Temp. High-Pressure 30, 283 (1998).Google Scholar
Newnham, R.E.: Properties of Materials (Oxford University Press, Oxford, 2005); pp. 4346.Google Scholar
Anderson, O.L.: A simplified method for calculating the Debye temperature from elastic constants. J. Phys. Chem. Solids 24, 909 (1963).Google Scholar
Schreiber, E., Aderson, O.L., and Soga, N.: Elastic Constants and Their Measurements (McGraw-Hill, New York, 1973).Google Scholar
Leitner, J., Chuchvalec, P., Sedmidubsky, D., Strejc, A., and Abrman, P.: Estimation of heat capacities of solid mixed oxides. Thermochim. Acta 395(1–2), 27 (2003).Google Scholar
Barin, I.: Thermochemical Data of Pure Substances, 2nd ed.; VCH: Weinheim, Germany, 1993.Google Scholar
Kittel, C.: Introduction to Solid State Physics, 6th ed.; John Wiley & Sons Inc.: New York, 1986.Google Scholar
Gopal, E.S.R.: Specific Heats at Low Temperature (Plenum, New York, 1996).Google Scholar
Barsoum, M.W., EI-Raghy, T., Rawn, C.J., Porter, W.D., Wang, H., Payzant, E.A., and Hubbard, C.R.: Thermal properties of Ti3SiC2 . J. Phys. Chem. Solids 60, 429 (1999).Google Scholar
Kittel, C.: Interpretation of the thermal conductivity of glasses. Phys. Rev. 75, 972 (1949).Google Scholar
Kingery, W.D.: Thermal conductivity: XII, temperature dependence of conductivity for single-phase ceramics. J. Am. Ceram. Soc. 38(7), 251 (1955).Google Scholar
Clarke, D.R.: Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf. Coat. Technol. 163164, 67 (2003).Google Scholar
Liu, B., Wang, J.Y., Li, F.Z., and Zhou, Y.C.: Theoretical elastic stiffness, structural stability and thermal conductivity of La2 T 2O7 (T = Ge, Ti, Sn, Zr, Hf) pyrochlore. Acta Mater. 58, 4369 (2010).Google Scholar
Xiang, H.M., Feng, Z.H., and Zhou, Y.C.: Ab initio computations of electronic, mechanical, lattice dynamical and thermal properties of ZrP2O7 . J. Eur. Ceram. Soc. 34, 1809 (2014).Google Scholar
Zhou, Y.C. and Liu, B.: Theoretical investigation of mechanical and thermal properties of MPO4 (M = Al, Ga). J. Eur. Ceram. Soc. 33, 2817 (2013).Google Scholar
Sun, L.C., Liu, B., Wang, J.M., Wang, J.Y., Zhou, Y.C., and Hu, Z.J.: Y4Si2O7 N2: A new oxynitride with low thermal conductivity. J. Am. Ceram. Soc. 95(10), 3278 (2012).Google Scholar
NIST material properties database in web of the American Ceramics Society, web site: http://www.ceramics.org/publications/ceramicpropertiesdatabases.aspx.Google Scholar
Sun, Z.Q., Zhou, Y.C., Wang, J.Y., and Li, M.S.: Thermal properties and thermal shock resistance of γ-Y2Si2O7 . J. Am. Ceram. Soc. 91(8), 2623 (2008).Google Scholar
Zhou, Y.C., Zhao, C., Wang, F., Sun, Y.J., Zheng, L.Y., and Wang, X.H.: Theoretical prediction and experimental investigation on the thermal and mechanical properties of bulk β-Yb2Si2O7 . J. Am. Ceram. Soc. 96(12), 3891 (2013).Google Scholar
Vassen, R., Cao, X.Q., Tietz, F., Basu, D., and Stover, D.: Zirconates as new material for thermal barrier coatings. J. Am. Ceram. Soc. 83(8), 2023 (2000).Google Scholar
Hass, D.D.: Direct vapor deposition of thermal barrier coatings. Ph.D. Dissertation, University of Virginia, 2000.Google Scholar
Sun, Z.Q., Li, M.S., and Zhou, Y.C.: Thermal properties of single-phase Y2SiO5 . J. Eur. Ceram. Soc. 29, 551 (2009).CrossRefGoogle Scholar
Wu, P. and Pelton, A.D.: Coupled thermodynamic-phase diagram assessment of the rare earth oxide-aluminium oxide binary systems. J. Alloys Compd. 179(1–2), 259 (1992).Google Scholar
Liu, B., Wang, J.Y., Zhou, Y.C., Liao, T., and Li, F.Z.: Theoretical elastic stiffness, structure stability and thermal conductivity of La2Zr2O7 pyrochlore. Acta Mater. 55, 2949 (2007).Google Scholar