Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T23:51:32.075Z Has data issue: false hasContentIssue false

Thermal plasma treatment of titanium carbide powders: Part II. In-flight formation of carbon-site vacancies and subsequent nitridation in titanium carbide powders during induction plasma treatment

Published online by Cambridge University Press:  31 January 2011

Takamasa Ishigaki*
Affiliation:
National Institute for Research in Inorganic Materials, 1–1, Namiki, Tsukuba-shi, Ibaraki 305, Japan
Yusuke Moriyoshi
Affiliation:
National Institute for Research in Inorganic Materials, 1–1, Namiki, Tsukuba-shi, Ibaraki 305, Japan
Takayuki Watanabe
Affiliation:
Department of Chemical Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152, Japan
Atsushi Kanzawa
Affiliation:
Department of Chemical Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152, Japan
*
a) Author to whom correspondence should be addressed.
Get access

Abstract

The in-flight modification of titanium carbide powders was carried out in radio-frequency (rf) inductively coupled plasmas. The powders were partially melted and evaporated, and then subjected to modifications in morphology, size, and chemical composition. Both the Ar–H2 and Ar–N2 plasma treatments induced the formation of carbon-site vacancies in titanium carbide. The mixing of NH3 to Ar–H2 plasma at the plasma tail, and the Ar–N2 plasma treatment resulted in the partial substitution of carbon by nitrogen. The variation in physical and chemical modification was discussed compared with the predictions by the thermochemical analysis, and the numerically obtained heat transfer of our preceding paper.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Boulos, M. I., Thermal, J.Spray Technol. 1, 33 (1992).Google Scholar
2.Ishigaki, T. and Boulos, M. I., Ceram. Trans. 22, 139 (1991).Google Scholar
3.Ishigaki, T., Bando, Y., Moriyoshi, Y, and Boulos, M. I., J. Mater. Sci. 28, 4223 (1993).CrossRefGoogle Scholar
4.Ishigaki, T., Jurewicz, J., Tanaka, J., Moriyoshi, Y., and Boulos, M. I., J. Mater. Sci. 30, 883 (1995).CrossRefGoogle Scholar
5.Toth, L. E., in Transition Metal Carbides and Nitrides (Academic Press, New York and London, 1971).Google Scholar
6.Ishigaki, T., Sato, T., Moriyoshi, Y., and Boulos, M. I., J. Mater. Sci. Lett. 14, 1694 (1995).CrossRefGoogle Scholar
7.Ishigaki, T., Matsumoto, S., Moriyoshi, Y., and Boulos, M. I., Denki Kagaku 61, 253 (1993) (in Japanese).Google Scholar
8.Watanabe, T., Kanzawa, A., Ishigaki, T., and Moriyoshi, Y., Proc. Symp. Plasma Science for Materials 6, 211 (1993).Google Scholar
9.Watanabe, T., Kanzawa, A., Ishigaki, T., and Moriyoshi, Y., J. High-Temp. Soc. Jpn. 20, 169 (1994) (in Japanese).Google Scholar
10.Watanabe, T., Kanzawa, A., Ishigaki, T., and Moriyoshi, Y., J. Mater. Res. 10, 2598 (1996).CrossRefGoogle Scholar
11.ChemSage Ver. 3.0, Eriksson, G. and Hack, K. (GTT mbH, Her-zogenrath, 1994).Google Scholar
12.SGTE Pure Substance Database, Ver. 1.0 (GTT mbH, Herzogen-rath, 1991).Google Scholar
13.Gustafson, P., Carbon 24, 169 (1986).CrossRefGoogle Scholar
14.Jonsson, S., Thesis, The Royal Institute of Technology (1993).Google Scholar
15.Das, D. K. and Sivakumar, R., Acta Metall. Mater. 38, 2187 (1990).CrossRefGoogle Scholar
16.Vardelle, M., Trassy, C., Vardelle, A., and Fauchais, P., Plasma Chem. Plasma Process. 11, 185 (1991).CrossRefGoogle Scholar
17.Eddy, T. L., Detering, B. A., and Wilson, G. C., Proc. 3rd Natl. Ternmal Spray Conf., Long Beach, CA, May 20–25 (1990), p. 33.Google Scholar
18.Lee, H-J., Eguchi, K., and Yoshida, T., J. Am. Ceram. Soc. 73, 3356 (1990).CrossRefGoogle Scholar
19.Ramaekers, P. P. J. and Metselaar, R., Brit. Ceram. Proc. 37, 119 (1986).Google Scholar