Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T22:03:39.499Z Has data issue: false hasContentIssue false

The thermal fission-induced crystalline-to-amorphous transformation in U6Fe

Published online by Cambridge University Press:  31 January 2011

Don M. Parkin
Affiliation:
Center for Materials Science, University of California, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Reed O. Elliott
Affiliation:
Materials Science and Technology Division, University of California, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

The crystalline-to-amorphous transformation in U6Fe produced by thermal fission fragment damage was studied using resistivity and differential scanning calorimetry. The results are described in terms of a model of radiation-produced defect buildup in the crystalline matrix followed by transformation of small regions to an amorphous phase when a critical local defect concentration is reached. This can occur directly in a single cascade or from cascade overlap. The total resistivity is modeled assuming an inhomogeneous media consisting of a crystalline matrix containing a dose-dependent concentration of defects and amorphous zones. The crystallization behavior is initially, starting at Tc = 388 K, a kinetically limited process of shrinkage of amorphous zones that gradually transforms to nucleation and growth in fully amorphous material at Tc = 555 K.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Brimhall, J. L., Kissinger, H. E., and Chariot, L. A., Radiat. Eff. 77, 237 (1983).CrossRefGoogle Scholar
2Russell, K. C., in Proceedings of the International Seminar on Solute Defect Interaction, edited by Saimote, S., Kidson, G., and Purdy, G. (Pergamon, Oxford, 1985), p. 317.Google Scholar
3Luzzi, D. E. and Meshii, M. E., Res. Mechanica 21, 207 (1987).Google Scholar
4Limoge, Y. and Barbu, A., Phys. Rev. B 30, 2212 (1984).CrossRefGoogle Scholar
5Mori, H., Fujita, H., and Fujita, M., Jpn. J. Appl. Phys. 22, L94 (1983).CrossRefGoogle Scholar
6Mori, H., Fujita, H., Tendo, M., and Fujita, M., Scr. Metall. 18, 783 (1984).CrossRefGoogle Scholar
7Simonen, E. P., Nucl. Instrum. Methods B 16, 198 (1986).CrossRefGoogle Scholar
8Pedraza, D. F., J. Mater. Res. 1, 3 (1986).CrossRefGoogle Scholar
9Luzzi, D. E., Mori, H., Fujita, H., and Meshii, M., Scr. Metall. 19, 897 (1985).CrossRefGoogle Scholar
10Gerling, R., Schimansky, F. P., and Wagner, R., J. Non-Cryst. Solids 61/62, 919 (1984).CrossRefGoogle Scholar
11Parkin, D. M. and Elliott, R. O., Nucl. Instrum. Methods B 16, 193 (1986).CrossRefGoogle Scholar
12Hemenger, P. M., Rev. Sci. Instrum. 44, 698 (1973).CrossRefGoogle Scholar
13Delong, L. E., Huber, J. G., Yang, K. N., and Maple, M. B., Phys. Rev. Lett. 51, 312 (1983).CrossRefGoogle Scholar
14Elliott, R. O., Smith, J. L., Finocchiaro, R. S., and Koss, D. A., Mater. Sci. Eng. 49, 65 (1981).CrossRefGoogle Scholar
15Fisk, Z. and Lawson, A. C., Solid State Commun. 13, 277 (1973).CrossRefGoogle Scholar
16Cote, P. J. and Meisel, L. V., in Glassy Metals I, edited by Giintherodt, H. J. and Beck, H. (Springer, Berlin, 1981), p. 141.CrossRefGoogle Scholar
17Mooij, J. H., Phys. Status Solidi A 17, 521 (1973).CrossRefGoogle Scholar
18Brodksy, M. B., Arko, A. J., Harvey, A. R., and Nellis, W. J., in The Actinides: Electronic Structure and Related Properties, edited by Freeman, A. J. and Darby, J. B. Jr, (Academic, New York, 1974), p. 186.Google Scholar
19King, E., Lee, J. A., Mendelsson, K., and Wigley, D. A., Proc. R. Soc. London A 284, 325 (1965).Google Scholar
20Testardi, L. R., Poate, J. M., and Levinstein, H. J., Phys. Rev. Lett. 37, 637 (1976).CrossRefGoogle Scholar
21Elliott, R. O., Koss, D. A., and Giessen, B. C., Scr. Metall. 14, 1061 (1980).CrossRefGoogle Scholar
22Schwarz, R. B., Petrich, R. R., and Saw, C. K., J. Nbn-Cryst. Solids 76, 281 (1985).CrossRefGoogle Scholar
23Wollenberger, H. J., in Vacancies and Interstitials in Metals, edited by Seeger, A., Schumacher, D., Schilling, W., and Diehl, J. (Wiley, New York, 1970), p. 215.Google Scholar
24Lussi, D. E., Mori, H., and Fujita, H., Scr. Metall. 18, 957 (1984).Google Scholar
25Moine, P., Riviere, J. P., Ruault, M. O., Chaumont, J., Pelton, A., and Sinclair, R., Nucl. Instrum. Methods B 7/8, 20 (1985).CrossRefGoogle Scholar
26Brimhall, J. L., Kissinger, H. E., and Pelton, A. R., Radiat. Eff. 70, 241 (1985).CrossRefGoogle Scholar
27Simonen, E. P., Nucl. Instrum. Methods B 16, 198 (1986).CrossRefGoogle Scholar
28Landauer, R., in Electrical Transport and Optcal Properties of Inhomogeneous Media, edited by Garland, J. C. and Tanner, D. B. (American Institute of Physics, New York, 1978), p. 2.Google Scholar
29Dennis, J. R. and Hale, E. B., J. Appl. Phys. 49, 1119 (1978).CrossRefGoogle Scholar
30Gibbons, J. F., Proc. IEEE 60, 1062 (1972).CrossRefGoogle Scholar
31Vogl, G. and Boning, K., Phys. Status Solidi A 1, K151 (1970).Google Scholar
32Quere, Y. and Nakache, F., J. Nucl. Mater. 2, 203 (1959).CrossRefGoogle Scholar
33Audouard, A., Benyagoub, A., Thome, L., and Chaumont, J., J. Phys. 15, 1237 (1985).CrossRefGoogle Scholar
34Koster, U. and Herold, U., in Glassy Metals I, edited by Giintherodt, H.-J. and Beck, H. (Springer, Berlin, 1981), p. 225.CrossRefGoogle Scholar
35Russell, K. C., Adv. Colloid Interface Sci. 13, 205 (1980).CrossRefGoogle Scholar
36Cantor, B., in Rapidly Quenched Metals, edited by Steeb, S. and Warlimont, H. (Elsevier, Lusanne, 1985), p. 595.CrossRefGoogle Scholar
37Sakata, M., Cowlam, N., and Davies, H. A., in the Proceedings of the 4th International Conference on Rapidly Quenched Metals, Sendai, 1981, p. 327.Google Scholar
38Fujita, H., J. Elec. Mech. Technol. 3, 45 (1986).CrossRefGoogle Scholar
39Kelton, K. F. and Spaepen, F., Acta Metall. 33, 455 (1985).CrossRefGoogle Scholar