Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T15:13:11.808Z Has data issue: false hasContentIssue false

Thermal arrest analysis of thermoelastic martensitic transformations in shape memory alloys

Published online by Cambridge University Press:  19 May 2011

Qinglin Meng
Affiliation:
School of Mechanical and Chemical Engineering, The University of Western Australia, Crawley, Western Australia 6009, Australia
Hong Yang
Affiliation:
School of Mechanical and Chemical Engineering, The University of Western Australia, Crawley, Western Australia 6009, Australia
Yinong Liu*
Affiliation:
School of Mechanical and Chemical Engineering, The University of Western Australia, Crawley, Western Australia 6009, Australia; and Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001, China
Tae-hyun Nam
Affiliation:
School of Materials Science and Engineering, Gyeongsang National University, Jinju, Gyeongnam 660-701, Korea
F. Chen
Affiliation:
Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001, China
*
a)Address all correspondence to this author. e-mail: yinong.liu@uwa.edu.au
Get access

Abstract

This study investigated a fundamental aspect of thermoelastic martensitic transformations in different shape memory alloys by means of interrupted thermal analysis technique using differential scanning calorimetry (DSC). The objective of this study was to determine the true transformation temperature interval. It also provides the opportunity to further the discussion of time dependence of the transformations. The study applied a technique of thermal arrest amidst phase transformations. The transformation temperature intervals were found to be 8.4 and 12.9 K for the forward and reverse B2↔B19′ martensitic transformation in a near-equiatomic Ti-50.2 at.% Ni alloy and 14.7 and 12.8 K in a Ni-rich Ti-50.8 at.% Ni alloy and 7.3 and 9.1 K for the L21↔orthorhombic transformation in a Ni43Co7Mn39In11 alloy. These values were significantly smaller than those commonly reported in the literature. The experimental evidences also demonstrated that the apparent time dependences of the martensitic transformations manifested in DSC analysis were artifacts caused by instrumental thermal inertia.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Chakraborty, I., Tang, W.C., Bame, D.P., and Tang, T.K.: MEMS micro-valve for space applications. Sens. Actuators 83, 188 (2000).CrossRefGoogle Scholar
2.Shin, D.D., Lee, D.G., Mohanchandra, K.P., and Carman, G.P.: Thin film NiTi microthermostat array. Sens. Actuators A 130/131, 37 (2006).CrossRefGoogle Scholar
3.Costanza, G., Tata, M.E., and Calisti, C.: Nitinol one-way shape memory springs: Thermomechanical characterization and actuator design. Sens. Actuators,A 157, 113 (2009).CrossRefGoogle Scholar
4.Botterill, N.W. and Grant, D.M.: Novel micro-thermal characterisation of thin film NiTi shape memory alloys. Mater. Sci. Eng. A 378, 424 (2004).CrossRefGoogle Scholar
5.Ortin, J. and Planes, A.: Thermodynamic analysis of thermal measurements in thermoelastic martensitic transformation. Acta Metall. 36, 1873 (1988).CrossRefGoogle Scholar
6.Ortin, J. and Planes, A.: Thermodynamics of thermoelastic martensitic transformations. Acta Metall. 37, 1433 (1989).CrossRefGoogle Scholar
7.Olson, G.B. and Cohen, M.: Thermoelastic behavior in martensitic transformaitons. Scr. Metall. 9, 1247 (1975).CrossRefGoogle Scholar
8.Olson, G.B. and Cohen, M.: Reply to “On the equilibrium temperature in thermoelastic martensitic transformations.” Scr. Metall. 11, 345 (1977).CrossRefGoogle Scholar
9.Wayman, C.M. and Tong, H.C.: On the equilibrium temperature in thermoelastic martensitic transformaitons. Scr. Metall. 11, 341 (1977).CrossRefGoogle Scholar
10.Liu, Y. and McCormick, P.G.: Thermodynamic analysis of the martensitic transformation in NiTi-I. Effect of heatreatment on transformation behaviour. Acta Metall. Mater. 42, 2401 (1994).CrossRefGoogle Scholar
11.Uchil, J., Mohanchandra, K.P., Ganesh Kumara, K., Mahesh, K.K., and Murali, T.P.: Thermal expansion in various phases of nitinol using TMA. Phys. B 270, 289 (1999).CrossRefGoogle Scholar
12.Kakeshita, T., Takeguchi, T., Fukuda, T., and Saburi, T.: Time-dependent nature of the athermal martensitic transformation in a Cu-Al-Ni shape memory alloy. Mater. Trans. JIM 37, 299 (1996).CrossRefGoogle Scholar
13.Kozuma, M., Murakami, Y., Kawano, T., and Otsuka, K.: An isothermal martensitic transformaiton in a quenched Au-49.5at.% Cd alloy. Scr. Mater. 36, 253 (1997).CrossRefGoogle Scholar
14.Otsuka, K., Ren, X., and Takeda, T.: Experimental test for a possible isothermal martensitic transformation in a Ti-Ni alloy. Scr. Mater. 45, 145 (2001).CrossRefGoogle Scholar
15.Chen, F., Tong, Y.X., Tian, B., Zheng, Y.F., and Liu, Y.: Time effect of martensitic transformation in Ni43Co7Mn41Sn9. Intermetallics 18, 188 (2010).CrossRefGoogle Scholar
16.Müller, L., Klemradt, U., and Finlayson, T.R.: Time-dependent phenomena in athermal martensitic transformations. Mater. Sci. Eng. A 438-440, 122 (2006).CrossRefGoogle Scholar
17.Planes, A., Pérez-Reche, F.J., Vives, E., and Mañosa, L.: Kinetics of martensitic transformations in shape memory alloys. Scr. Mater. 50, 181 (2004).CrossRefGoogle Scholar
18.Kakeshita, T., Kuroiwa, K., Shimizu, K., Ikeda, T., Yamagishi, A., and Date, M.: A new model explainable for both the athermal and isothermal natures of martensitic transformations in Fe-Ni-Mn alloys. Mater. Trans. JIM 34, 423 (1993).CrossRefGoogle Scholar
19.Sharma, V.K., Chattopadhyay, M.K., and Roy, S.B.: Kinetics arrest of the first order austenite to martensitic phase transition in Ni50Mn34In16: dc magnetization studies. Phys. Rev. B 76, 140401 (2007).CrossRefGoogle Scholar
20.Laughlin, D.E., Jones, N.J., Schwartz, A.J., and Massalski, T.B.: Thermally activated martensite: Its relationship to non-thermally activated (athermal) martensite. (ICOMAT, Santa Fe, NM, June 29–July 5, 2008).Google Scholar
21.Kustov, S., Salas, D., Santamarta, R., Cesari, E., and Humbeeck, J.V.: Isothermal and athermal martensitic transformations in B2-R-B19′ sequence in Ni-Ti shape memory alloys. Scr. Mater. 63, 1240 (2010).CrossRefGoogle Scholar
22.Meng, Q.L., Yang, H., Liu, Y., and Nam, T.: Transformation intervals and elastic strain energies of B2-B19’ martensitic transformation of NiTi. Intermetallics. 18, 2431 (2010).CrossRefGoogle Scholar
23.Roitburd, A.L. and Kurdjumov, G.V.: The nature of martensitic transformations. Mater. Sci. Eng. 39, 141 (1979).CrossRefGoogle Scholar
24.Wollants, P., Roos, J.R., and Delaey, L.: Thermally- and stress-induced thermoelastic martensitic transformations in the reference frame of equilibrium thermodynamics. Prog. Mater. Sci. 37, 227 (1993).CrossRefGoogle Scholar
25.Salzbrenner, R.J. and Cohen, M.: On the thermodynamics of thermoelastic martensitic transformations. Acta Metall. 27, 739 (1979).CrossRefGoogle Scholar
26.Liu, Y. and McCormick, P.G.: Influence of heat treatment on the internal resistance to the martensitic transformation in NiTi. (ICOMAT-7, Monterey, CA, July 20–24, 1992).Google Scholar
27.McCormick, P.G. and Liu, Y.: Thermodynamic analysis of the martensitic transformation in NiTi—II. Effect of transformation cycling. Acta Metall. Mater. 42, 2407 (1994).CrossRefGoogle Scholar
28.Ito, W., Imano, Y., Kainuma, R., Sutou, Y., Oikawa, K., and Ishida, K.: Martensitic and magnetic transformation behaviors in Heusler-type NiMnIn and NiCoMnIn metamagnetic shape memory alloys. Metall. Mater. Trans. A. 38A, 759 (2007).CrossRefGoogle Scholar
29.Krumhansl, J.: Landau models for structural phase transitions: Are soft modes needed? Solid State Commun. 84, 251 (1992).CrossRefGoogle Scholar
30.Cao, W., Krumhansl, J., and Gooding, R.: Defect-induced heterogeneous transformations and thermal growth in athermal martensite. Phys. Rev. B 41, 11319 (1990).CrossRefGoogle ScholarPubMed
31.Vives, E., Ortín, J., Mañosa, L., Ràfols, I., Pérez-Magrané, R., and Planes, A.: Distributions of avalanches in martensitic transformations. Phys. Rev. Lett. 72, 1694 (1994).CrossRefGoogle ScholarPubMed
32.Sordelet, D.J., Besser, M.F., Ott, R.T., Zimmerman, B.J., Porter, W.D., and Gleeson, B.: Isothermal nature of martensitic formation in Pt-modified β–TiAl alloys. Acta Mater. 55, 2433 (2007).CrossRefGoogle Scholar
33.Wakasa, K. and Wayman, C.M.: Isothermal martensite formation in an Fe-20%Ni-5%Mn alloy. Metallography 14, 37 (1981).CrossRefGoogle Scholar