Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T21:48:17.579Z Has data issue: false hasContentIssue false

Theoretical chemical characterization of energetic materials

Published online by Cambridge University Press:  03 March 2011

Betsy M. Rice*
Affiliation:
Ballistics and Weapons Concepts Division, Weapons and Materials Research Directorate, United States Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005-5069
Edward F.C. Byrd
Affiliation:
Ballistics and Weapons Concepts Division, Weapons and Materials Research Directorate, United States Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005-5069
*
a) Address all correspondence to this author. e-mail: betsyr@arl.army.mil This paper was selected as the Outstanding Meeting Paper for the 2005 MRS Fall Meeting Symposium H Proceedings, Vol. 896.
Get access

Abstract

Our research is focused on developing computational capabilities for the prediction of properties of energetic materials associated with performance and sensitivity. Additionally, we want to identify and characterize the dynamic processes that influence conversion of an energetic material to products upon initiation. We are attempting to achieve these goals through the use of standard atomistic simulation methods. In this paper, various theoretical chemistry methods and applications to energetic materials will be described. Current capabilities in predicting structures, thermodynamic properties, and dynamic behavior of these materials will be demonstrated. These are presented to exemplify how information generated from atomistic simulations can be used in the design, development, and testing of new energetic materials. In addition to illustrating current capabilities, we will discuss limitations of the methodologies and needs for advancing the state of the art in this area.

Type
Outstanding Meeting Papers
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Rice, B.M. Applications of theoretical chemistry in assessing energetic materials for performance or sensitivity, in Overviews of Recent Research in Energetic Materials, edited by Thompson, D.L., Brill, T.B., and Shaw, R.W. (World Scientific Publishing, Hackensack, NJ, 2003), p. 335.Google Scholar
2.Politzer, P., Murray, J.S. Sensitivity correlations, in Energetic Materials: Part 2. Detonation, Combustion (Theoretical and Computational Chemistry), edited by Politzer, P. and Murray, J.S. (Elsevier Science, Amsterdam, The Netherlands, 2003).Google Scholar
3.Chong, D.P.: Recent Advances in Computational Chemistry, Volume 1, edited by Chong, D.P. (World Scientific Publishing, Hackensack, NJ, 1995).Google Scholar
4.Hehre, W. J., Radom, L., Schleyer, P.v.R., Pople, J. A.: Ab Initio Molecular Orbital Theory (John Wiley & Sons, New York, New York, 1986), pp. 271, 298.Google Scholar
5.McLean, A.D., Chandler, G.S.: Contracted Gaussian-basis sets for molecular calculations. I. Second row atoms, Z = 11–18. J. Chem. Phys. 72, 5639 (1980).CrossRefGoogle Scholar
6.Krishnan, R., Binkley, J.S., Seeger, R., Pople, J.A.: Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72, 650 (1980).CrossRefGoogle Scholar
7.Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648 (1993).CrossRefGoogle Scholar
8.Lee, C., Yang, W., Parr, R.G.: Development of the Colle– Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785 (1988).CrossRefGoogle ScholarPubMed
9.Rice, B.M., Pai, S.V., Hare, J.: Predicting heats of formation of energetic materials using quantum mechanical calculations. Combust. Flame 118, 445 (1999).CrossRefGoogle Scholar
10.Byrd, E.F.C., Rice, B.M.: Improved prediction of heats of formation of energetic materials using quantum mechanical calculations. J. Phys. Chem. A 110, 1005 (2006).CrossRefGoogle ScholarPubMed
11.Politzer, P., Murray, J.S., Brinck, T., Lane, P. Analytic Representation and prediction of macroscopic properties—A general interaction properties function, in Immunoanalysis of Agrochemicals, ACS Symp. Ser. 586, edited by Nelson, J.O., Karu, A.E., and Wong, R.B., (American Chemical Society, Washington, DC, 1994), p. 11.Google Scholar
12.Murray, J.S., Lane, P., Politzer, P.: Effects of strongly electron-attracting components on molecular surface electrostatic potentials: Application to predicting impact sensitivities of energetic molecules. Mol. Phys. 93, 187 (1998).CrossRefGoogle Scholar
13.Rice, B.M., Hare, J.: A quantum mechanical investigation of the relation between impact sensitivity and the charge distribution in energetic molecules. J. Phys. Chem. A 106, 1770 (2002).CrossRefGoogle Scholar
14.Wilson, W.S., Bliss, D.E., Christian, S.L., Knight, D.J. Explosive properties of polynitroaromatics, Naval Weapons Center Technical Publication 7073, April, 1990 (Naval Weapons Center, China Lake, CA).Google Scholar
15.Wu, C.J., Fried, L.E. First-principles study of high explosive decomposition energetics, in Proceedings 11th Symposium (International) on Detonation, Snowmass, Colorado, edited by Office of Naval Reserach (ONR-33300-5, Arlington, VA, 1998), p. 490.Google Scholar
16.Sorescu, D.C., Rice, B.M., Thompson, D.L.: Intermolecular potential for the hexahydro-1,3,5-trinitro-1,3,5-s-triazine crystal (RDX): A crystal packing, Monte Carlo and molecular dynamics study. J. Phys. Chem. B. 101, 798 (1997).CrossRefGoogle Scholar
17.Sorescu, D.C., Rice, B.M., Thompson, D.L.: Molecular packing and NPT-molecular dynamics investigation of the transferability of the RDX intermolecular potential to 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane. J. Phys. Chem. B 102, 948 (1998).CrossRefGoogle Scholar
18.Sorescu, D.C., Rice, B.M., Thompson, D.L.: Isothermal-isobaric molecular dynamics simulations of 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX) crystals. J. Phys. Chem. B 102, 6692 (1998).CrossRefGoogle Scholar
19.Sorescu, D.C., Rice, B.M., Thompson, D.L.: A transferable intermolecular potential for nitramine crystals. J. Phys. Chem. A 102, 8386 (1998).CrossRefGoogle Scholar
20.Sorescu, D.C., Rice, B.M., Thompson, D.L.: Molecular packing and molecular dynamics study of the transferability of a generalized nitramine intermolecular potential to non-nitramine crystals. J. Phys. Chem. A 103, 989 (1999).CrossRefGoogle Scholar
21.Sorescu, D.C., Rice, B.M., Thompson, D.L.: Theoretical studies of solid nitromethane. J. Phys. Chem. B 104, 8406 (2000).CrossRefGoogle Scholar
22.Sorescu, D.C., Rice, B.M., Thompson, D.L.: Molecular dynamics simulations of liquid nitromethane. J. Phys. Chem. B 105, 9336 (2001).CrossRefGoogle Scholar
23.Agrawal, P.M., Rice, B.M., Thompson, D.L.: Molecular dynamics study of the melting of nitromethane. J. Chem. Phys. 119, 9617 (2003).CrossRefGoogle Scholar
24.Solca, J., Dyson, A.J., Steinebrunner, G., Kirchner, B.: Melting curve for argon calculated from pure theory. Chem. Phys. 224, 253 (1997).CrossRefGoogle Scholar
25.Agrawal, P.M., Rice, B.M., Thompson, D.L.: Molecular dynamics study of the effects of voids and pressure in defect-nucleated melting simulations. J. Chem. Phys. 118, 9680 (2003).CrossRefGoogle Scholar
26.Kubicki, J.D., Lasaga, A.C.: Abinitio molecular-dynamics simulations of melting in forsterite and perovskite. Am. J. Sci. 292, 153 (1992).CrossRefGoogle Scholar
27.Belonoshko, A.B.: Molecular-dynamics of MgSiO3 perovskite at high pressures-equation of state, structure and melting transition. Geochim. Cosmochim. Acta 58, 4039 (1994).CrossRefGoogle Scholar
28.Belonoshko, A.B., Dubrovinsky, L.S.: Molecular dynamics of NaCl (B1 and B2) and MgO (B1) melting: Two-phase simulation. Am. Mineral. 81, 303 (1996).CrossRefGoogle Scholar
29.Rice, B.M., Sorescu, D.C.: Assessing a generalized CHNO intermolecular potential through ab initio crystal structure prediction. J. Phys. Chem. B 108, 17730 (2004).CrossRefGoogle Scholar
30.Sorescu, D.C., Rice, B.M., Thompson, D.L.: Theoretical studies of the hydrostatic compression of RDX, HMX, HNIW and PETN crystals. J. Phys. Chem. B. 103, 6783 (1999).CrossRefGoogle Scholar
31.Byrd, E.F.C., Scuseria, G.E., Chabalowski, C.F.: An ab initio study of solid nitromethane, HMX, RDX and CL20: Successes and failures of DFT. J. Phys. Chem. B 108, 13100 (2004).CrossRefGoogle Scholar
32.Gan, C.K., Sewell, T.D., Challacombe, M.: All-electron density-functional studies of hydrostatic compression of pentaerythritol tetranitrate C(CH2ONO2)4. Phys. Rev. B 69, 035116 (2004).CrossRefGoogle Scholar
33.Reed, E.J., Joannopoulos, J.D., Fried, L.E.: Electronic excitations in shocked nitromethane. Phys. Rev. B 62, 16500 (2000).CrossRefGoogle Scholar
34.Liu, H., Zhao, J., Wei, D., Gong, Z.: Structural and vibrational properties of solid nitromethane under high pressure by density-functional theory. J. Chem. Phys. 124, 124501 (2006).CrossRefGoogle ScholarPubMed
35.Kresse, G., Furthmuller, J.: Vienna Ab-initio Simulation Package (VASP): The Guide (VASP Group, Institut fur Materialphysik, Universitat Wien, Wien, Vienna, Austria, 2003).Google Scholar
36.Perdew, J.P. in Electronic Structures of Solids ’91, edited by Ziesche, P. and Eschrig, H. (Akademie-Verlag, Berlin, Germany, 1991), p. 11.Google Scholar
37.Olinger, B., Halleck, P.M., Cady, H.H.: The isothermal linear and volume compression of pentaerythritol tetranitrate (PETN) to 10 GPa (100 kbar) and the calculated shock compression. J. Chem. Phys. 62, 4480 (1975).CrossRefGoogle Scholar
38.Gruzdkov, Y.A., Dreger, Z.A., Gupta, Y.M.: Experimental and theoretical study of pentaerythritol tetranitrate conformers. J. Phys. Chem. A 108, 6216 (2004).CrossRefGoogle Scholar
39.Lipinska-Kalita, K.E., Pravica, M.G., Nicol, M.: Raman scattering studies of the high-pressure stability of pentaerythritol tetranitrate, C(CH2ONO2)4. J. Phys. Chem. B 109, 19233 (2005).CrossRefGoogle ScholarPubMed
40.Klapötke, T. Ludwig-Maximilians University of Munich, private communication (2005).Google Scholar